Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications – SciTechDaily
Posted: November 28, 2020 at 4:57 pm
In a new realm of materials, PhD student Thanh Nguyen uses neutrons to hunt for exotic properties that could power real-world applications.
Thanh Nguyen is in the habit of breaking down barriers. Take languages, for instance: Nguyen, a third-year doctoral candidate in nuclear science and engineering (NSE), wanted to connect with other people and cultures for his work and social life, he says, so he learned Vietnamese, French, German, and Russian, and is now taking an MIT course in Mandarin. But this drive to push past obstacles really comes to the fore in his research, where Nguyen is trying to crack the secrets of a new and burgeoning branch of physics.
My dissertation focuses on neutron scattering on topological semimetals, which were only experimentally discovered in 2015, he says. They have very special properties, but because they are so novel, theres a lot thats unknown, and neutrons offer a unique perspective to probe their properties at a new level of clarity.
Topological materials dont fit neatly into conventional categories of substances found in everyday life. They were first materialized in the 1980s, but only became practical in the mid-2000s with deepened understanding of topology, which concerns itself with geometric objects whose properties remain the same even when the objects undergo extreme deformation. Researchers experimentally discovered topological materials even more recently, using the tools of quantum physics.
Within this domain, topological semimetals, which share qualities of both metals and semiconductors, are of special interest to Nguyen.They offer high levels of thermal and electric conductivity, and inherent robustness, which makes them very promising for applications in microelectronics, energy conversions, and quantum computing, he says.
Intrigued by the possibilities that might emerge from such unconventional physics, Nguyen is pursuing two related but distinct areas of research: On the one hand, Im trying to identify and then synthesize new, robust topological semimetals, and on the other, I want to detect fundamental new physics with neutrons and further design new devices.
My goal is to create programmable artificial structured topological materials, which can directly be applied as a quantum computer, says Thanh Nguyen. Credit: Gretchen Ertl
Reaching these goals over the next few years might seem a tall order. But at MIT, Nguyen has seized every opportunity to master the specialized techniques required for conducting large-scale experiments with topological materials, and getting results. Guided by his advisor,Mingda Li, the Norman C Rasmussen Assistant Professor and director of theQuantum Matter Groupwithin NSE, Nguyen was able to dive into significant research even before he set foot on campus.
The summer, before I joined the group, Mingda sent me on a trip to Argonne National Laboratory for a very fun experiment that used synchrotron X-ray scattering to characterize topological materials, recalls Nguyen. Learning the techniques got me fascinated in the field, and I started to see my future.
During his first two years of graduate school, he participated in four studies, serving as a lead author in three journal papers. In one notable project,described earlier this yearinPhysical Review Letters, Nguyen and fellow Quantum Matter Group researchers demonstrated, through experiments conducted at three national laboratories, unexpected phenomena involving the way electrons move through a topological semimetal, tantalum phosphide (TaP).
These materials inherently withstand perturbations such as heat and disorders, and can conduct electricity with a level of robustness, says Nguyen. With robust properties like this, certain materials can conductivity electricity better than best metals, and in some circumstances superconductors which is an improvement over current generation materials.
This discovery opens the door to topological quantum computing. Current quantum computing systems, where the elemental units of calculation are qubits that perform superfast calculations, require superconducting materials that only function in extremely cold conditions. Fluctuations in heat can throw one of these systems out of whack.
The properties inherent to materials such as TaP could form the basis of future qubits, says Nguyen. He envisions synthesizing TaP and other topological semimetals a process involving the delicate cultivation of these crystalline structures and then characterizing their structural and excitational properties with the help of neutron and X-ray beam technology, which probe these materials at the atomic level. This would enable him to identify and deploy the right materials for specific applications.
My goal is to create programmable artificial structured topological materials, which can directly be applied as a quantum computer, says Nguyen. With infinitely better heat management, these quantum computing systems and devices could prove to be incredibly energy efficient.
Energy efficiency and its benefits have long concerned Nguyen. A native of Montreal, Quebec, with an aptitude for math and physics and a concern for climate change, he devoted his final year of high school to environmental studies. I worked on a Montreal initiative to reduce heat islands in the city by creating more urban parks, he says. Climate change mattered to me, and I wanted to make an impact.
At McGill University, he majored in physics. I became fascinated by problems in the field, but I also felt I could eventually apply what I learned to fulfill my goals of protecting the environment, he says.
In both classes and research, Nguyen immersed himself in different domains of physics. He worked for two years in a high-energy physics lab making detectors for neutrinos, part of a much larger collaboration seeking to verify the Standard Model. In the fall of his senior year at McGill, Nguyens interest gravitated toward condensed matter studies. I really enjoyed the interplay between physics and chemistry in this area, and especially liked exploring questions in superconductivity, which seemed to have many important applications, he says. That spring, seeking to add useful skills to his research repertoire, he worked at Ontarios Chalk River Laboratories, where he learned to characterize materials using neutron spectroscopes and other tools.
These academic and practical experiences served to propel Nguyen toward his current course of graduate study. Mingda Li proposed an interesting research plan, and although I didnt know much about topological materials, I knew they had recently been discovered, and I was excited to enter the field, he says.
Nguyen has mapped out the remaining years of his doctoral program, and they will prove demanding. Topological semimetals are difficult to work with, he says. We dont yet know the optimal conditions for synthesizing them, and we need to make these crystals, which are micrometers in scale, in quantities large enough to permit testing.
With the right materials in hand, he hopes to develop a qubit structure that isnt so vulnerable to perturbations, quickly advancing the field of quantum computing so that calculations that now take years might require just minutes or seconds, he says. Vastly higher computational speeds could have enormous impacts on problems like climate, or health, or finance that have important ramifications for society. If his research on topological materials benefits the planet or improves how people live, says Nguyen, I would be totally happy.
See more here:
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 24th, 2020
- Global Quantum Computing Market Predicted to Garner $667.3 Million by 2027, Growing at 30.0% CAGR from 2020 to 2027 - [193 pages] Informative Report... - December 24th, 2020
- Quantum Computer Completed A 2.5-Billion-Year Task In 200 Seconds - Intelligent Living - December 24th, 2020
- University collaboration gives Scotland the edge in global quantum computing race - HeraldScotland - December 24th, 2020
- Scaling the heights of quantum computing to deliver real results - Chinadaily.com.cn - China Daily - December 24th, 2020
- Bitcoin is quantum computing resistant regardless of rising fears among investors - FXStreet - December 24th, 2020
- This Incredible Particle Only Arises in Two Dimensions - Popular Mechanics - December 24th, 2020
- Two Years into the Government's National Quantum Initiative - Nextgov - December 24th, 2020
- Atos Delivers Its First GPU-Accelerated Quantum Learning Machine to the Irish Centre for High-End Computing - HPCwire - December 24th, 2020
- With Next Cryo, a startup that's really cooling its jets - Innovate Long Island - Innovate Long Island - December 24th, 2020
- Chip-Based Photon Source Is 100X More Efficient than Previous, Bringing Quantum Integration Within Reach - HPCwire - December 24th, 2020
- Quantum computing - Wikipedia - December 17th, 2020
- What is quantum computing? - December 17th, 2020
- Explainer: What is a quantum computer? | MIT Technology Review - December 17th, 2020
- Eight leading quantum computing companies in 2020 | ZDNet - December 17th, 2020
- Wall Streets latest shiny new thing: quantum computing - The Economist - December 17th, 2020
- Quantum computing: Strings of ultracold atoms reveal the surprising behavior of quantum particles - ZDNet - December 17th, 2020
- Anyon Systems to Deliver a Quantum Computer to the Canadian Department of National Defense - GlobeNewswire - December 17th, 2020
- Chinese quantum computer may be the most powerful ever seen - Siliconrepublic.com - December 17th, 2020
- 'Magic' angle graphene and the creation of unexpected topological quantum states - Princeton University - December 17th, 2020
- This breakthrough could unlock the true power of quantum - Wired.co.uk - December 17th, 2020
- ASC20-21 Student Supercomputer Challenge Kickoff: Quantum Computing Simulations, AI Language Exam and Pulsar Searching with FAST - Business Wire - November 28th, 2020
- Imperfections Lower the Simulation Cost of Quantum Computers - Physics - November 28th, 2020
- Quantum Computing Market : Analysis and In-depth Study on Size Trends, and Regional Forecast - Cheshire Media - November 28th, 2020
- Global Quantum Computing Market 2020 Recovering From Covid-19 Outbreak | Know About Brand Players: D-Wave Systems, 1QB Information Technologies,... - November 28th, 2020
- Is the blockchain vulnerable to hacking by quantum computers? - Moneyweb.co.za - November 28th, 2020
- Here's Why the Quantum World Is Just So Strange - Walter Bradley Center for Natural and Artificial Intelligence - November 28th, 2020
- Quantum Computing Market Detailed Analysis of Current and Future Industry Figures 2020-2026 | Leading Players StationQ- Microsoft, Google, 1QB... - November 16th, 2020
- Quantum Computing in the CloudCan It Live Up to the Hype? - Electronic Design - November 16th, 2020
- Supply Chain: The Quantum Computing Conundrum | Logistics - Supply Chain Digital - The Procurement & Supply Chain Platform - November 16th, 2020
- CCNY & partners in quantum algorithm breakthrough | The City College of New York - The City College of New York News - November 16th, 2020
- Hybrid cloud and quantum computing to shape IT: IBM chief - Nikkei Asian Review - November 16th, 2020
- NTTs Kazuhiro Gomi says Bio Digital Twin, quantum computing the next-gen tech - Backend News - November 16th, 2020
- A Scoville Heat Scale For Measuring The Progress Of Emerging Technologies In 2021 - Forbes - November 16th, 2020
- How quantum computing could drive the future auto industry - TechHQ - September 17th, 2020
- Spin-Based Quantum Computing Breakthrough: Physicists Achieve Tunable Spin Wave Excitation - SciTechDaily - September 17th, 2020
- 2025 will be the year of Quantum on the desktop - Fudzilla - September 17th, 2020
- Putting the Quantum in Security - Optics & Photonics News - September 17th, 2020
- NTT Research and University of Notre Dame Collaborate to Explore Continuous-Time Analog Computing - Quantaneo, the Quantum Computing Source - September 17th, 2020
- Assistant Professor in Computer Science job with Indiana University | 286449 - The Chronicle of Higher Education - September 17th, 2020
- EU leaders to ask European Commission to name areas of strategic weakness - Reuters - September 17th, 2020
- We Just Found Another Obstacle For Quantum Computers to Overcome - And It's Everywhere - ScienceAlert - September 2nd, 2020
- Quantum Computing Market Is Booming Worldwide | D-Wave Systems, 1QB Information Technologies, QxBranch LLC and more - The Daily Chronicle - September 2nd, 2020
- Tufts Joins Major Effort to Build the Next Generation of Quantum Computers - Tufts Now - September 2nd, 2020
- The Quantum Dream: Are We There Yet? - Toolbox - September 2nd, 2020
- Bipartisan Bill Calls for Government-Led Studies Into Emerging Tech Impacts - Nextgov - September 2nd, 2020
- Two Pune Research Institutes Are Building India's First Optical Atomic Clocks - The Wire Science - September 2nd, 2020
- Vitalik Buterin highlights major threats to Bitcoin BTC and Ethereum ETH - Digital Market News - September 2nd, 2020
- What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?) - Forbes - August 23rd, 2020
- Has the world's most powerful computer arrived? - The National - August 23rd, 2020
- Will Quantum Computers Really Destroy Bitcoin? A Look at the Future of Crypto, According to Quantum Physicist Anastasia Marchenkova - The Daily Hodl - August 23rd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through August 22) - Singularity Hub - August 23rd, 2020
- A Meta-Theory of Physics Could Explain Life, the Universe, Computation, and More - Gizmodo - August 23rd, 2020
- This Twist on Schrdinger's Cat Paradox Has Major Implications for Quantum Theory - Scientific American - August 23rd, 2020
- Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE - August 23rd, 2020
- Quantum Information Processing Market 2020 | Know the Latest COVID19 Impact Analysis And Strategies of Key Players: 1QB Information Technologies,... - August 23rd, 2020
- Doctor Strange might want to trade his Time Stone for time crystals that are doing some otherworldly things - SYFY WIRE - August 23rd, 2020
- Trump betting millions to lay the groundwork for quantum internet in the US - CNBC - April 28th, 2020
- Announcing the IBM Quantum Challenge - Quantaneo, the Quantum Computing Source - April 28th, 2020
- Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design - QS WOW News - April 28th, 2020
- Muquans and Pasqal partner to advance quantum computing - Quantaneo, the Quantum Computing Source - April 28th, 2020
- Deltec Bank, Bahamas - Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sector - marketscreener.com - April 28th, 2020
- New way of developing topological superconductivity discovered - Chemie.de - April 28th, 2020
- Hot Qubits Could Deliver a Quantum Computing Breakthrough - Popular Mechanics - April 19th, 2020
- Quantum Computing With Particles Of Light: A $215 Million Gamble - Forbes - April 19th, 2020
- Quantum computing heats up down under as researchers reckon they know how to cut costs and improve stability - The Register - April 19th, 2020
- The future of quantum computing in the cloud - TechTarget - April 19th, 2020
- World coronavirus Dispatch: Quantum Computing Market Recent Trends and Developments, Challenges and Opportunities, key drivers and Restraints over the... - April 19th, 2020
- Quantum Computing Market 2020 Break Down by Top Companies, Applications, Challenges, Opportunities and Forecast 2026 Cole Reports - Cole of Duty - April 19th, 2020
- Science of Star Trek - The UCSB Current - April 19th, 2020
- Defense budget cuts following the pandemic will be hard to swallow | TheHill - The Hill - April 19th, 2020
- Pentagon wants commercial, space-based quantum sensors within 2 years - The Sociable - April 19th, 2020
- RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register - April 10th, 2020
- Microsoft invests in PsiQuantum, a startup which is building the worlds first useful quantum computer - MSPoweruser - MSPoweruser - April 10th, 2020
- Securing IoT in the Quantum Age - Eetasia.com - April 10th, 2020
- More free, discounted tech for governments responding to COVID-19 - GCN.com - April 10th, 2020
- Quantum Computing Startup Raises $215 Million for Faster Device - Bloomberg - April 6th, 2020
- How quantum computing will be used to model elections - TechRepublic - April 6th, 2020
- Quantum Computing: What You Need To Know - Inc42 Media - April 6th, 2020
- Here's when we can expect the next major leap in quantum computing - TechRepublic - April 6th, 2020