## Scientists Have Shown There’s No ‘Butterfly Effect’ in the Quantum World – VICE

Posted: August 23, 2020 at 10:57 pm

Of all the reasons for wanting to time-travelsaving someone from a fatal mistake, exploring ancient civilizations, gathering evidence about unsolved crimesrecovering lost information isnt the most exciting. But even if a quest to recover the file that didnt auto-save doesn't sound like a Hollywood movie plot, weve all had moments when weve longed to go back in time for exactly that reason.

Theories of time and time-travel have highlighted an apparent stumbling block: time travel requires changing the past, even simply by adding in the time traveller. The problem, according to chaos theory, is that the smallest of changes can cause radical consequences in the future. In this conception of time travel, it wouldnt be advisable to recover your unsaved document since this act would have huge knock-on effects on everything else.

New research in quantum physics from Los Alamos National Laboratory has shown that the so-called butterfly effect can be overcome in the quantum realm in order to unscramble lost information by essentially reversing time.

In a paper published in July, researchers Bin Yan and Nikolai Sinitsyn write that a thought experiment in unscrambling information with time-reversing operations would be expected to lead to the same butterfly effect as the one in the famous Ray Bradburys story A Sound of Thunder In that short story, a time traveler steps on an insect in the deep past and returns to find the modern world completely altered, giving rise to the idea we refer to as the butterfly effect.

In contrast," they wrote, "our result shows that by the end of a similar protocol the local information is essentially restored.

"The primary focus of this work is not 'time travel'physicists do not have an answer yet to tell whether it is possible and how to do time travel in the real world, Yan clarified.

[But] since our protocol involves a 'forward' and a 'backward' evolution of the qubits, achieved by changing the orders of quantum gates in the circuit, it has a nice interpretation in terms of Ray Bradbury's story for the butterfly effect. So, it is an accurate and useful way to understand our results."

What is the butterfly effect?

The world does not behave in a neat, ordered way. If it did, identical events would always produce the same patterns of knock-on effects, and the future would be entirely predictable, or deterministic. Chaos theory claims that the opposite: total randomness is not our situation either. We exist somewhere in the middle, in a world that often appears random but in fact obeys rules and patterns.

Patterns within chaos are hidden because they are highly sensitive to tiny changes, which means similar but not identical situations can produce wildly different outcomes. Another way of putting it is that in a chaotic world, effects can be totally out of proportion to their causes, like the metaphor of a flap of butterfly wings causing a tornado on the other side of the world. On the tornado side of the world, the storm would seem random, because the connection between the butterfly-flap and the tornado is too complex to be apparent. While this butterfly effect is the classic poetic metaphor illustrating chaos theory, chaotic dynamics also play out in real-world contexts, including population growth in the Canadian lynx species and the rotation of Plutos moons.

Another feature of chaos is that, even though the rules are deterministic, the future is not predictable in the long-term. Since chaos is so sensitive to small variations, there are near-infinite ways the rules could play out and we would need to know an impossible amount of detail about the present and past to map out exactly how the world will evolve.

Similarly, you cant reverse-engineer some piece of information about the past simply by knowing the current and even future situations; time-travel doesnt help retrieve past information, because even moving backwards in time, the chaotic system is still in play and will produce unpredictable effects.

Information scrambling

Unscrambling information which has previously been scrambled is not straightforward in a chaotic system. Yan and Sinitsyns key discovery is that it is nonetheless possible in quantum computing to get enough information via time-reversal which will then enable information unscrambling.

According to Yan, the fact that the butterfly effect does not occur in quantum realms is not a surprising result, but demonstrating information unscrambling is both novel and important.

In quantum information theory, scrambling occurs when the information encoded in each quantum particle is split up and redistributed across multiple quantum particles in the same quantum system. The scrambling is not random, since information redistribution relies on quantum entanglement, which means that the states of some quantum particles are dependent on each other. Although the scrambled result is seemingly chaotic, the information can be put back together, at least in principle, using the entangled relationships.

Importantly, information scrambling is not the same as information loss. To continue the earlier analogy: information loss occurs when a document is permanently deleted from your computer. For information scrambling, imagine cutting and pasting tiny bits of one computer file into every other file on your machine. Each file now contains a mess of information snippets. You could reconstruct the original files, if you remembered exactly which bits were cut and pasted, and did the entire process in reverse.

Physicists are interested in information scrambling for two main reasons. On the theoretical side, its been proposed as a way to explain what happens to information sucked into a black hole. On the more applied side, it could be an important mechanism for quantum computers to store and hide information, and could produce fast and efficient quantum simulators, which are used already to perform complex experiments including new drug discovery.

Yan and Sinitsyn fall into the second camp, and construct what they call a practically accessible scenario to test unscrambling by time-travel. This scenario is still hypothetical, but explores the mathematics of the actual quantum processor used by Google to demonstrate quantum supremacy in 2019.

Yan says: Another potential application is to use this effect to protect information. A random evolution on a quantum circuit can make the qubit robust to perturbations. One may further exploit the discovered effect to design protocols in quantum cryptography.

The set-up

In Yan and Sinitsyn's quantum thought experiment, Alice and Bob are the protagonists. Alice is using a simplified version of Googles quantum processor to hide just one part of the information stored on the computer (called the central qubit) by scrambling this qubits state across all the other qubits (called the qubit bath). Bob is cast as the intruder, much like a malicious computer hacker. He wants the important information originally stored on the central qubit, now distributed across entangled quantum particles in the bath.

Unfortunately, Bobs hack, while successful in getting the information he wanted, leaves a trail of destruction.

If her processor has already scrambled the information, Alice is sure that Bob cannot get anything useful, the authors write. However, Bobs measurement changes the state of the central qubit and also destroys all quantum correlations between this qubit and the rest of the system.

Bob's method of information theft has altered the computer state so that Alice can also no longer access the hidden information. In this case, the damage occurs because quantum states contain all possible values they could have, with assigned probabilities of each value, but these possibilities (represented by the wave function) collapse down to just one value when a measurement is taken. Quantum computing relies on unmeasured quantum systems to store even more information in multiple possible states, and Bobs intrusion has totally altered the computer system.

Reversing time

Theoretically, the behaviour of a quantum system moving backwards in time can be demonstrated mathematically using whats called a time-reversed evolution operator, which is exactly what Alice uses to de-scramble the information.

Her time-reversal is not actually time travel the way we understand it from science fiction, it is literally a reversal of times direction; the system evolves backwards following whatever dynamics are in play, rather than Alice herself revisiting an earlier time. If the butterfly effect held in the quantum world, then this backwards evolution would actually increase the damage Bob had caused, and Alice would only be able to retrieve the hidden information if she knew exactly what that damage was and could correct her calculations accordingly.

Luckily for Alice, quantum systems behave totally differently to non-quantum (classical or semiclassical) chaotic systems. What Yan and Sinitsyn found is that she can apply her time-reversal operation and end up at an "earlier" state which will not be identical with the initial system she set up, but it will also not have increased the damage which occurred later. Alice can then reconstruct her initial system using a method of quantum unscrambling called quantum state tomography.

What this means is that a quantum system can effectively heal and even recover information that was scrambled in the past, without the chaos of the butterfly effect.

Classical chaotic evolution magnifies any state damage exponentially quickly, which is known as the butterfly effect, explain Yan and Sinitsyn. The quantum evolution, however, is

linear. This explains why, in our case, the uncontrolled damage to the state is not magnified by the subsequent complex evolution. Moreover, the fact that Bobs measurement does not damage the useful information follows from the property of entanglement correlations in the scrambled state.

Hypothetical though this scenario may be, the result already has a practical use: verifying whether a quantum system has achieved quantum supremacy. Quantum processors can simulate time-reversal in a way that classical computers cannot, which could provide the next important test for the quantum race between Google and IBM.

So, while time travel is still not in the cards, the quantum world continues to mess with our classical conception of how the world evolves in time, and pushes the limits of computing information.

See the original post:

Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE

- Cambridge named as world-leading centre of quantum computing research - Varsity Online - February 5th, 2021
- Quantum Computing Market 2018 Size, Application,Revenue, Types, Trends in Future, Scope to 2030 | D-Wave Systems Inc., QX Branch Co., IBM Co., Google... - February 5th, 2021
- Quantum computing breakthrough uses cryogenics to scale machines to thousands of times their current size - The Independent - February 3rd, 2021
- Quantum Computing Market worth $1,765 million by 2026 - Exclusive Report by MarketsandMarkets - PRNewswire - February 3rd, 2021
- IBM's Goldeneye: Behind the scenes at the world's largest dilution refrigerator - ZDNet - February 3rd, 2021
- Establishing a Women Inclusive Future in Quantum Computing - Analytics Insight - February 3rd, 2021
- The risk of giving in to quantum progress - ComputerWeekly.com - February 3rd, 2021
- Quantum Computing 101 -What it is, how is it different and why it matters - The Jerusalem Post - February 3rd, 2021
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 24th, 2020
- Global Quantum Computing Market Predicted to Garner $667.3 Million by 2027, Growing at 30.0% CAGR from 2020 to 2027 - [193 pages] Informative Report... - December 24th, 2020
- Quantum Computer Completed A 2.5-Billion-Year Task In 200 Seconds - Intelligent Living - December 24th, 2020
- University collaboration gives Scotland the edge in global quantum computing race - HeraldScotland - December 24th, 2020
- Scaling the heights of quantum computing to deliver real results - Chinadaily.com.cn - China Daily - December 24th, 2020
- Bitcoin is quantum computing resistant regardless of rising fears among investors - FXStreet - December 24th, 2020
- This Incredible Particle Only Arises in Two Dimensions - Popular Mechanics - December 24th, 2020
- Two Years into the Government's National Quantum Initiative - Nextgov - December 24th, 2020
- Atos Delivers Its First GPU-Accelerated Quantum Learning Machine to the Irish Centre for High-End Computing - HPCwire - December 24th, 2020
- With Next Cryo, a startup that's really cooling its jets - Innovate Long Island - Innovate Long Island - December 24th, 2020
- Chip-Based Photon Source Is 100X More Efficient than Previous, Bringing Quantum Integration Within Reach - HPCwire - December 24th, 2020
- Quantum computing - Wikipedia - December 17th, 2020
- What is quantum computing? - December 17th, 2020
- Explainer: What is a quantum computer? | MIT Technology Review - December 17th, 2020
- Eight leading quantum computing companies in 2020 | ZDNet - December 17th, 2020
- Wall Streets latest shiny new thing: quantum computing - The Economist - December 17th, 2020
- Quantum computing: Strings of ultracold atoms reveal the surprising behavior of quantum particles - ZDNet - December 17th, 2020
- Anyon Systems to Deliver a Quantum Computer to the Canadian Department of National Defense - GlobeNewswire - December 17th, 2020
- Chinese quantum computer may be the most powerful ever seen - Siliconrepublic.com - December 17th, 2020
- 'Magic' angle graphene and the creation of unexpected topological quantum states - Princeton University - December 17th, 2020
- This breakthrough could unlock the true power of quantum - Wired.co.uk - December 17th, 2020
- ASC20-21 Student Supercomputer Challenge Kickoff: Quantum Computing Simulations, AI Language Exam and Pulsar Searching with FAST - Business Wire - November 28th, 2020
- Imperfections Lower the Simulation Cost of Quantum Computers - Physics - November 28th, 2020
- Quantum Computing Market : Analysis and In-depth Study on Size Trends, and Regional Forecast - Cheshire Media - November 28th, 2020
- Global Quantum Computing Market 2020 Recovering From Covid-19 Outbreak | Know About Brand Players: D-Wave Systems, 1QB Information Technologies,... - November 28th, 2020
- Is the blockchain vulnerable to hacking by quantum computers? - Moneyweb.co.za - November 28th, 2020
- Here's Why the Quantum World Is Just So Strange - Walter Bradley Center for Natural and Artificial Intelligence - November 28th, 2020
- Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications - SciTechDaily - November 28th, 2020
- Quantum Computing Market Detailed Analysis of Current and Future Industry Figures 2020-2026 | Leading Players StationQ- Microsoft, Google, 1QB... - November 16th, 2020
- Quantum Computing in the CloudCan It Live Up to the Hype? - Electronic Design - November 16th, 2020
- Supply Chain: The Quantum Computing Conundrum | Logistics - Supply Chain Digital - The Procurement & Supply Chain Platform - November 16th, 2020
- CCNY & partners in quantum algorithm breakthrough | The City College of New York - The City College of New York News - November 16th, 2020
- Hybrid cloud and quantum computing to shape IT: IBM chief - Nikkei Asian Review - November 16th, 2020
- NTTs Kazuhiro Gomi says Bio Digital Twin, quantum computing the next-gen tech - Backend News - November 16th, 2020
- A Scoville Heat Scale For Measuring The Progress Of Emerging Technologies In 2021 - Forbes - November 16th, 2020
- How quantum computing could drive the future auto industry - TechHQ - September 17th, 2020
- Spin-Based Quantum Computing Breakthrough: Physicists Achieve Tunable Spin Wave Excitation - SciTechDaily - September 17th, 2020
- 2025 will be the year of Quantum on the desktop - Fudzilla - September 17th, 2020
- Putting the Quantum in Security - Optics & Photonics News - September 17th, 2020
- NTT Research and University of Notre Dame Collaborate to Explore Continuous-Time Analog Computing - Quantaneo, the Quantum Computing Source - September 17th, 2020
- Assistant Professor in Computer Science job with Indiana University | 286449 - The Chronicle of Higher Education - September 17th, 2020
- EU leaders to ask European Commission to name areas of strategic weakness - Reuters - September 17th, 2020
- We Just Found Another Obstacle For Quantum Computers to Overcome - And It's Everywhere - ScienceAlert - September 2nd, 2020
- Quantum Computing Market Is Booming Worldwide | D-Wave Systems, 1QB Information Technologies, QxBranch LLC and more - The Daily Chronicle - September 2nd, 2020
- Tufts Joins Major Effort to Build the Next Generation of Quantum Computers - Tufts Now - September 2nd, 2020
- The Quantum Dream: Are We There Yet? - Toolbox - September 2nd, 2020
- Bipartisan Bill Calls for Government-Led Studies Into Emerging Tech Impacts - Nextgov - September 2nd, 2020
- Two Pune Research Institutes Are Building India's First Optical Atomic Clocks - The Wire Science - September 2nd, 2020
- Vitalik Buterin highlights major threats to Bitcoin BTC and Ethereum ETH - Digital Market News - September 2nd, 2020
- What Is Quantum Supremacy And Quantum Computing? (And How Excited Should We Be?) - Forbes - August 23rd, 2020
- Has the world's most powerful computer arrived? - The National - August 23rd, 2020
- Will Quantum Computers Really Destroy Bitcoin? A Look at the Future of Crypto, According to Quantum Physicist Anastasia Marchenkova - The Daily Hodl - August 23rd, 2020
- This Week's Awesome Tech Stories From Around the Web (Through August 22) - Singularity Hub - August 23rd, 2020
- A Meta-Theory of Physics Could Explain Life, the Universe, Computation, and More - Gizmodo - August 23rd, 2020
- This Twist on Schrdinger's Cat Paradox Has Major Implications for Quantum Theory - Scientific American - August 23rd, 2020
- Quantum Information Processing Market 2020 | Know the Latest COVID19 Impact Analysis And Strategies of Key Players: 1QB Information Technologies,... - August 23rd, 2020
- Doctor Strange might want to trade his Time Stone for time crystals that are doing some otherworldly things - SYFY WIRE - August 23rd, 2020
- Trump betting millions to lay the groundwork for quantum internet in the US - CNBC - April 28th, 2020
- Announcing the IBM Quantum Challenge - Quantaneo, the Quantum Computing Source - April 28th, 2020
- Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design - QS WOW News - April 28th, 2020
- Muquans and Pasqal partner to advance quantum computing - Quantaneo, the Quantum Computing Source - April 28th, 2020
- Deltec Bank, Bahamas - Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sector - marketscreener.com - April 28th, 2020
- New way of developing topological superconductivity discovered - Chemie.de - April 28th, 2020
- Hot Qubits Could Deliver a Quantum Computing Breakthrough - Popular Mechanics - April 19th, 2020
- Quantum Computing With Particles Of Light: A $215 Million Gamble - Forbes - April 19th, 2020
- Quantum computing heats up down under as researchers reckon they know how to cut costs and improve stability - The Register - April 19th, 2020
- The future of quantum computing in the cloud - TechTarget - April 19th, 2020
- World coronavirus Dispatch: Quantum Computing Market Recent Trends and Developments, Challenges and Opportunities, key drivers and Restraints over the... - April 19th, 2020
- Quantum Computing Market 2020 Break Down by Top Companies, Applications, Challenges, Opportunities and Forecast 2026 Cole Reports - Cole of Duty - April 19th, 2020
- Science of Star Trek - The UCSB Current - April 19th, 2020
- Defense budget cuts following the pandemic will be hard to swallow | TheHill - The Hill - April 19th, 2020
- Pentagon wants commercial, space-based quantum sensors within 2 years - The Sociable - April 19th, 2020