## Wiring the Quantum Computer of the Future: Researchers from Japan and Australia propose a novel 2D design – QS WOW News

Posted: April 28, 2020 at 2:44 am

The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges. Efficient quantum computing is expected to enable advancements that are impossible with classical computers. A group of scientists from Tokyo University of Science, Japan, RIKEN Centre for Emergent Matter Science, Japan, and the University of Technology, Sydney have collaborated and proposed a novel two-dimensional design that can be constructed using existing integrated circuit technology. This design solves typical problems facing the current three-dimensional packaging for scaled-up quantum computers, bringing the future one step closer.

Quantum computing is increasingly becoming the focus of scientists in fields such as physics and chemistry, and industrialists in the pharmaceutical, airplane, and automobile industries. Globally, research labs at companies like Google and IBM are spending extensive resources on improving quantum computers, and with good reason. Quantum computers use the fundamentals of quantum mechanics to process significantly greater amounts of information much faster than classical computers. It is expected that when the error-corrected and fault-tolerant quantum computation is achieved, scientific and technological advancement will occur at an unprecedented scale.

But, building quantum computers for large-scale computation is proving to be a challenge in terms of their architecture. The basic units of a quantum computer are the quantum bits or qubits. These are typically atoms, ions, photons, subatomic particles such as electrons, or even larger elements that simultaneously exist in multiple states, making it possible to obtain several potential outcomes rapidly for large volumes of data. The theoretical requirement for quantum computers is that these are arranged in two-dimensional (2D) arrays, where each qubit is both coupled with its nearest neighbor and connected to the necessary external control lines and devices. When the number of qubits in an array is increased, it becomes difficult to reach qubits in the interior of the array from the edge. The need to solve this problem has so far resulted in complex three-dimensional (3D) wiring systems across multiple planes in which many wires intersect, making their construction a significant engineering challenge. https://youtu.be/14a__swsYSU

The team of scientists led by Prof Jaw-Shen Tsai has proposed a unique solution to this qubit accessibility problem by modifying the architecture of the qubit array. Here, we solve this problem and present a modified superconducting micro-architecture that does not require any 3D external line technology and reverts to a completely planar design, they say. This study has been published in the New Journal of Physics.

The scientists began with a qubit square lattice array and stretched out each column in the 2D plane. They then folded each successive column on top of each other, forming a dual one-dimensional array called a bi-linear array. This put all qubits on the edge and simplified the arrangement of the required wiring system. The system is also completely in 2D. In this new architecture, some of the inter-qubit wiringeach qubit is also connected to all adjacent qubits in an arraydoes overlap, but because these are the only overlaps in the wiring, simple local 3D systems such as airbridges at the point of overlap are enough and the system overall remains in 2D. As you can imagine, this simplifies its construction considerably.

The scientists evaluated the feasibility of this new arrangement through numerical and experimental evaluation in which they tested how much of a signal was retained before and after it passed through an airbridge. The results of both evaluations showed that it is possible to build and run this system using existing technology and without any 3D arrangement.

The scientists experiments also showed them that their architecture solves several problems that plague the 3D structures: they are difficult to construct, there is crosstalk or signal interference between waves transmitted across two wires, and the fragile quantum states of the qubits can degrade. The novel pseudo-2D design reduces the number of times wires cross each other, thereby reducing the crosstalk and consequently increasing the efficiency of the system.

At a time when large labs worldwide are attempting to find ways to build large-scale fault-tolerant quantum computers, the findings of this exciting new study indicate that such computers can be built using existing 2D integrated circuit technology. The quantum computer is an information device expected to far exceed the capabilities of modern computers, Prof Tsai states. The research journey in this direction has only begun with this study, and Prof Tsai concludes by saying, We are planning to construct a small-scale circuit to further examine and explore the possibility.

View original post here:

- Bigger quantum computers, faster: This new idea could be the quickest route to real world apps - ZDNet - July 2nd, 2021
- Quantum computing just took on another big challenge, one that could be as tough as steel - ZDNet - July 2nd, 2021
- Missing Piece Discovered in the Puzzle of Optical Quantum Computing - SciTechDaily - July 2nd, 2021
- Rare Superconductor Discovered May Be Critical for the Future of Quantum Computing - SciTechDaily - July 2nd, 2021
- Quantum Computing Breakthrough: Unveiling Properties of New Superconductor - Analytics Insight - July 2nd, 2021
- This Startup Is Using Quantum Computing And AI To Cut Drug Discovery Time From 3 Years To 4 Months - Forbes - July 2nd, 2021
- Keynotes Announced for IEEE International Conference on Quantum Computing and Engineering - HPCwire - July 2nd, 2021
- The only answer to the quantum cybersecurity threat is quantum - Sifted - July 2nd, 2021
- NIST's Quantum Security Protocols Near the Finish Line The U.S. standards and technology authority is searching - IoT World Today - July 2nd, 2021
- #YouthMatters: IBM's Amira Abbas on quantum computing and AI - Bizcommunity.com - July 2nd, 2021
- CSRWire - Refusing Limits with Liz Ruetsch - CSRwire.com - July 2nd, 2021
- Quantum Computing Software Market Analytical Overview, Growth Factors, Demand and Trends Forecast to 2027 The Manomet Current - The Manomet Current - July 2nd, 2021
- People of Argonnes history: A look at leaders who made Argonne what it is today - Newswise - July 2nd, 2021
- Clearing the way toward robust quantum computing - MIT News - June 17th, 2021
- IBM's first quantum computer outside of the US has just gone live - ZDNet - June 17th, 2021
- Honeywell Does a Quantum Computing Deal. Is This the New Age of Computing? - Barron's - June 17th, 2021
- Hacking bitcoin wallets with quantum computers could happen but cryptographers are racing to build a workaround - CNBC - June 17th, 2021
- Honeywell joins hands with Cambridge Quantum Computing to form a new company - The Hindu - June 17th, 2021
- New quantum computing company will set the pace - Cambridge Network - June 17th, 2021
- Trinity College teams up with Microsoft on quantum computing programme - The Irish Times - June 17th, 2021
- Google wants to build a useful quantum computer by 2029 - The Verge - May 22nd, 2021
- 27 Milestones In The History Of Quantum Computing - Forbes - May 22nd, 2021
- Quantum Computing: The Chronicle of its Origin and Beyond - Analytics Insight - May 22nd, 2021
- Quantum computing is a concept we struggle to understand. - The Morning News - May 22nd, 2021
- Quantum computings imminent arrival in Cleveland could be a back-to-the-future moment: Thomas Bier - cleveland.com - May 22nd, 2021
- Quantum Computing Market 2021-Industry Demands, Size & Share, Covid-19 Impact Analysis, Recent Developments, Global Growth, Trends, Top Operating... - May 22nd, 2021
- Researchers design new experiments to map and test the quantum realm - Harvard Gazette - May 22nd, 2021
- France takes next step in quantum technology with Dutch processor - Innovation Origins - May 22nd, 2021
- The Worldwide Quantum Technology Industry will Reach $31.57 Billion by 2026 - North America to be the Biggest Region - PRNewswire - May 22nd, 2021
- Maryland Today | 'We Really Are Terrapin Strong' - Maryland Today - May 22nd, 2021
- Following Atoms in Real Time Could Lead to New Types of Materials and Quantum Technology Devices - SciTechDaily - May 22nd, 2021
- International Advanced Research Workshop on HPC Returns to Cetraro July 2021 - HPCwire - May 22nd, 2021
- IBM and MIT kickstarted the age of quantum computing in 1981 - Fast Company - May 9th, 2021
- Here's the lowdown on how quantum computing affects the Middle East - SCOOP EMPIRE - May 9th, 2021
- IBM Extends HBCU Initiatives Through New Industry Collaborations - PRNewswire - May 9th, 2021
- Here comes the worlds first ever multi-node quantum network - TelecomTV - May 9th, 2021
- Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach - HPCwire - May 9th, 2021
- Cambridge named as world-leading centre of quantum computing research - Varsity Online - February 5th, 2021
- Quantum Computing Market 2018 Size, Application,Revenue, Types, Trends in Future, Scope to 2030 | D-Wave Systems Inc., QX Branch Co., IBM Co., Google... - February 5th, 2021
- Quantum computing breakthrough uses cryogenics to scale machines to thousands of times their current size - The Independent - February 3rd, 2021
- Quantum Computing Market worth $1,765 million by 2026 - Exclusive Report by MarketsandMarkets - PRNewswire - February 3rd, 2021
- IBM's Goldeneye: Behind the scenes at the world's largest dilution refrigerator - ZDNet - February 3rd, 2021
- Establishing a Women Inclusive Future in Quantum Computing - Analytics Insight - February 3rd, 2021
- The risk of giving in to quantum progress - ComputerWeekly.com - February 3rd, 2021
- Quantum Computing 101 -What it is, how is it different and why it matters - The Jerusalem Post - February 3rd, 2021
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 24th, 2020
- Global Quantum Computing Market Predicted to Garner $667.3 Million by 2027, Growing at 30.0% CAGR from 2020 to 2027 - [193 pages] Informative Report... - December 24th, 2020
- Quantum Computer Completed A 2.5-Billion-Year Task In 200 Seconds - Intelligent Living - December 24th, 2020
- University collaboration gives Scotland the edge in global quantum computing race - HeraldScotland - December 24th, 2020
- Scaling the heights of quantum computing to deliver real results - Chinadaily.com.cn - China Daily - December 24th, 2020
- Bitcoin is quantum computing resistant regardless of rising fears among investors - FXStreet - December 24th, 2020
- This Incredible Particle Only Arises in Two Dimensions - Popular Mechanics - December 24th, 2020
- Two Years into the Government's National Quantum Initiative - Nextgov - December 24th, 2020
- Atos Delivers Its First GPU-Accelerated Quantum Learning Machine to the Irish Centre for High-End Computing - HPCwire - December 24th, 2020
- With Next Cryo, a startup that's really cooling its jets - Innovate Long Island - Innovate Long Island - December 24th, 2020
- Chip-Based Photon Source Is 100X More Efficient than Previous, Bringing Quantum Integration Within Reach - HPCwire - December 24th, 2020
- Quantum computing - Wikipedia - December 17th, 2020
- What is quantum computing? - December 17th, 2020
- Explainer: What is a quantum computer? | MIT Technology Review - December 17th, 2020
- Eight leading quantum computing companies in 2020 | ZDNet - December 17th, 2020
- Wall Streets latest shiny new thing: quantum computing - The Economist - December 17th, 2020
- Quantum computing: Strings of ultracold atoms reveal the surprising behavior of quantum particles - ZDNet - December 17th, 2020
- Anyon Systems to Deliver a Quantum Computer to the Canadian Department of National Defense - GlobeNewswire - December 17th, 2020
- Chinese quantum computer may be the most powerful ever seen - Siliconrepublic.com - December 17th, 2020
- 'Magic' angle graphene and the creation of unexpected topological quantum states - Princeton University - December 17th, 2020
- This breakthrough could unlock the true power of quantum - Wired.co.uk - December 17th, 2020
- ASC20-21 Student Supercomputer Challenge Kickoff: Quantum Computing Simulations, AI Language Exam and Pulsar Searching with FAST - Business Wire - November 28th, 2020
- Imperfections Lower the Simulation Cost of Quantum Computers - Physics - November 28th, 2020
- Quantum Computing Market : Analysis and In-depth Study on Size Trends, and Regional Forecast - Cheshire Media - November 28th, 2020
- Global Quantum Computing Market 2020 Recovering From Covid-19 Outbreak | Know About Brand Players: D-Wave Systems, 1QB Information Technologies,... - November 28th, 2020
- Is the blockchain vulnerable to hacking by quantum computers? - Moneyweb.co.za - November 28th, 2020
- Here's Why the Quantum World Is Just So Strange - Walter Bradley Center for Natural and Artificial Intelligence - November 28th, 2020
- Cracking the Secrets of an Emerging Branch of Physics: Exotic Properties to Power Real-World Applications - SciTechDaily - November 28th, 2020
- Quantum Computing Market Detailed Analysis of Current and Future Industry Figures 2020-2026 | Leading Players StationQ- Microsoft, Google, 1QB... - November 16th, 2020
- Quantum Computing in the CloudCan It Live Up to the Hype? - Electronic Design - November 16th, 2020
- Supply Chain: The Quantum Computing Conundrum | Logistics - Supply Chain Digital - The Procurement & Supply Chain Platform - November 16th, 2020
- CCNY & partners in quantum algorithm breakthrough | The City College of New York - The City College of New York News - November 16th, 2020
- Hybrid cloud and quantum computing to shape IT: IBM chief - Nikkei Asian Review - November 16th, 2020
- NTTs Kazuhiro Gomi says Bio Digital Twin, quantum computing the next-gen tech - Backend News - November 16th, 2020
- A Scoville Heat Scale For Measuring The Progress Of Emerging Technologies In 2021 - Forbes - November 16th, 2020