Machine learning: The new language of data and analytics – ITProPortal
Posted: December 3, 2020 at 4:58 am
Machine learning is all the rage in todays analytical market. According to Kenneth Research, the value of machine learning is growing sharply and is expected to reach over $23B by 2023 an annual growth rate of 43 percent between 2018-2023. IDC enforces this point predicting that worldwide spend on cognitive & AI systems, which includes machine learning, will reach $110B by 2024. Likewise, Gartner believes the business value machine learning and AI will create will be about $3.9T in 2022. With these kinds of predictions, its no surprise organizations want to incorporate these popular (and lucrative) methods into their analytical processes.
Machine learning is not a new concept in the analytical lifecycle data scientists have been using machine learning to help facilitate analytical processes and drive insights for decades. What is new is the use of machine learning for data preparation tasks to accelerate data processes and expedite analytical efforts. Here are four ways data preparation efforts can leverage machine learning for more effective and faster data reconditioning efforts:
1. Data transformation recommendations built into solutions suggest how data needs to be standardized and converted to meet analytical needs. This feature can proactively look at the quality of the data set and identify what quality transformation should be executed to ensure the data is ready for analytics. These recommendations are based on historical preparation tasks while using AI/machine learning to present new recommendations to the user.
2. Automated analytical partitioning applies AI/machine learning to determine the best way to partition the data for analytics. It also provides transparency on which method should be used and why. This helps speed up the analytical process because the data is automatically grouped together for training, validation and test buckets.
3. Smart matching incorporates AI/machine learning to proactively group like data elements together. Using the most effective matching discipline allows the user to decide if they want to automatically build a golden record and assign unique keys to the data.
4. Intelligent data assignment provides the data and analytics community quick understanding of the classification of the data type (e.g., name, address, product, sku), which allows simple tasks like gender assignment to be performed without user intervention. Data automatically populates a data catalog and uses natural language processing to explain the data, while contributing to the lineage for quick impact analysis.
The main objective of applying machine learning techniques to the data preparation process in innovative ways is to find hidden treasures in the data. These found treasures in the data can have a positive impact across many facets of business enterprises such as competitive advantage, regulation requirements, supply chain fulfillment and optimization, manufacturing health, medical insights, etc. To be specific, here is an exploration of how machine learning can impact a critical business initiative like fraud detection and prevention.
1. Unsupervised learning added to the fraud environment enables organizations to find edge cases in the data and proactively identify abnormal behaviors not found in traditional methods. These abnormal behaviors can be moved into a supervised learning process, like regression or classification analytics, to predict if these outliers are new types of fraudulent activities that require additional investigation.
2. Text analytics provide unique insights by disambiguating certain data attributes that numerical data cant identify and therefore helping to identify unknown patterns between text and traditional data components. These insights may lead to new fraud patterns for consideration.
3. Hibernation can be used for smart alerting to apply a scoring model across all data - active and historical - to identify new fraud patterns that need attention. This process consolidates scores into one entity-level score for risk assessment and transaction monitoring, helping to identify new, out-of-threshold incidents for additional investigation.
4. Adding automated natural language processing (NLP) to the fraud mix provides human language translations to complex analytical findings, delivering the information in a way that humans can use and understand. Coupling NLP with image recognition helps identify document types using context analytics on text classifications, improving the accuracy rates of fraud detection.
5. Through dynamic ranking, more data is available for machine learning processes, resulting in more complete cluster analysis, identification of better risk predictors and elimination of false variables. Machine learning will teach itself about the normal data conditions and proactively monitor and update risk scores for more data-driven results.
6. Intelligent due diligence provides entity resolutions across product and business lines. Machine learning creates profiling for peer groupings and identifies expected behaviors using network and graph analytics. Because machine learning identifies expected behaviors, it can also point out unexpected behaviors that may indicate suspicious activities or a market shift that needs to be addressed.
7. Smart alerting takes traditional alerting data and combines it with additional data to unearth new conditions that need to be investigated. With machine learning, the tools can teach themselves what alerts can be handled automatically and what alerts need a human eye. Intelligent detection optimizes existing detection models by including more data and AI/machine learning techniques to identify new scenarios using newly combined targeted subgroups to find additional detections or alerts for consideration.
In summary, the machine learning marketspace is exploding, bringing business value to organizations across all industries. Machine learning produces new insights and allows organizations to leverage more or all the data to make better and smarter decisions. So, lets start speaking the new machine learning language of data and analytics today!
Kim Kaluba, Senior Manager for Data Management Solutions, SAS
See the article here:
Machine learning: The new language of data and analytics - ITProPortal
- Getting Started With Machine Learning: Definition and Applications - CMSWire - February 20th, 2021
- This Biotech Company Combines Single Cell Genomics with Machine Learning (ML) Algorithms To Enable High Resolution Profiling of the Immune System -... - February 20th, 2021
- Immunai Raises $60M to Decode the Immune System with Machine Learning and AI - AlleyWatch - February 20th, 2021
- Cloud Machine Learning Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper - KSU |... - February 20th, 2021
- Machine Learning in Insurance Market: Indoor Applications Projected to be the Most Attractive Segment during 2021-2029 KSU | The Sentinel Newspaper -... - February 20th, 2021
- Carin Meier Using Machine Learning to Combat Major Illness, such as the Coronavirus - InfoQ.com - February 20th, 2021
- Moffitt Cancer Center: Why we are building the first machine learning department in oncology - The Cancer Letter - February 20th, 2021
- Machine Learning and where is it used? - Tech Guide - February 20th, 2021
- Artificial Intelligence and Machine Learning for Insurance Technology from Johnson Controls Available on the Ocean Tomo Bid-Ask Market - Yahoo Finance - February 20th, 2021
- Identifying COVID-19 Therapy Candidates With Machine Learning - Contagionlive.com - February 20th, 2021
- Machine Learning in Tax and Accounting Market gigantic revenues by 2028 with Amazon Web Services, Baidu Inc, Google, Intel, IBM, Hewlett Packard,... - February 20th, 2021
- Using AI and Machine Learning will increase in horti industry - hortidaily.com - February 13th, 2021
- The head of JPMorgan's machine learning platform explained what it's like to work there - eFinancialCareers - February 13th, 2021
- If you know nothing about deep learning with Python, start here - TechTalks - February 13th, 2021
- Mental health diagnoses and the role of machine learning - Health Europa - February 13th, 2021
- 5 Ways the IoT and Machine Learning Improve Operations - BOSS Magazine - February 13th, 2021
- There Is No Silver Bullet Machine Learning Solution - Analytics India Magazine - February 13th, 2021
- Postdoctoral Research Associate in Digital Humanities and Machine Learning job with DURHAM UNIVERSITY | 246392 - Times Higher Education (THE) - February 13th, 2021
- The Collision of AI's Machine Learning and Manipulation: Deepfake Litigation Risks to Companies from a Product Liability, Privacy, and Cyber... - February 13th, 2021
- Parascript and SFORCE Partner to Leverage Machine Learning Eliminating Barriers to Automation - GlobeNewswire - February 13th, 2021
- Rackspace Technology Study uncovers AI and Machine Learning knowledge gap in the UAE - Intelligent CIO ME - February 13th, 2021
- How Blockchain and Machine Learning Impact on education system - ABCmoney.co.uk - February 13th, 2021
- Mission Healthcare of San Diego Adopts Muse Healthcare's Machine Learning Tool - Southernminn.com - January 19th, 2021
- Deep Learning Outperforms Standard Machine Learning in Biomedical Research Applications, Research Shows - Georgia State University News - January 19th, 2021
- Project MEDAL to apply machine learning to aero innovation - The Engineer - January 19th, 2021
- Forecast On Machine Learning (ML) Intelligent Process Automation Market Witness the Growth of Great Billion by 2027 With Top Companies Like Automation... - January 19th, 2021
- Machine Learning Shown to Identify Patient Response to Sarilumab in Rheumatoid Arthritis - AJMC.com Managed Markets Network - January 19th, 2021
- Bangalore based Great Learning can help you unleash the potential of an M-Tech in Data Science & Machine - Times of India - January 19th, 2021
- CERC plans to embrace AI, machine learning to improve functioning - Business Standard - January 19th, 2021
- NTT Co-authored Papers at NeurIPS to Advance Machine Learning Efficiency and Performance - Business Wire - December 7th, 2020
- Why Intel believes confidential computing will boost AI and machine learning - VentureBeat - December 3rd, 2020
- Machine Learning Market to Grow Notably Attributed to Increasing Adoption of Analytics-driven Solutions by Developing Economies, says Fortune Business... - December 3rd, 2020
- Injecting Machine Learning And Bayesian Optimization Into HPC - The Next Platform - December 3rd, 2020
- QA Increasingly Benefits from AI and Machine Learning - RTInsights - December 3rd, 2020
- Everything to Know About Machine Learning as a Service (MLaaS) - Analytics Insight - December 3rd, 2020
- How the Food and Beverage Industry is Affected by Machine Learning and AI - IoT For All - December 3rd, 2020
- Amazon announces new machine learning tools to help customers monitor machines and worker safety - www.computing.co.uk - December 3rd, 2020
- Machine Learning and Location Data Applications Market 2020 Top Companies report covers, Industry Outlook, Top Countries Analysis & Top... - December 3rd, 2020
- Commentary: Chain of Demand applies AI, machine learning to retail supply chain profitability - FreightWaves - December 3rd, 2020
- Machine learning - it's all about the data - KHL Group - December 3rd, 2020
- Product Portfolio Analysis and Technological Development of Machine Learning in Medical Imaging Market during the forecasted period - Murphy's Hockey... - December 3rd, 2020
- Imaging AI and Machine Learning Beyond the Hype, Upcoming Webinar Hosted by Xtalks - PR Web - December 3rd, 2020
- Veritone aiWARE Now Supports NVIDIA CUDA for GPU-based AI and Machine Learning - Business Wire - December 3rd, 2020
- Exactech Launches Predict+, First Machine Learning-Based Software that Informs Surgeons with Patient-Specific Outcomes Predictions After Shoulder... - December 3rd, 2020
- How To Choose The Best Machine Learning Algorithm For A Particular Problem? - Analytics India Magazine - October 19th, 2020
- Lantronix Brings Advanced AI and Machine Learning to Smart Cameras With New Open-Q 610 SOM Based on the Powerful Qualcomm QCS610 System on Chip (SOC)... - October 19th, 2020
- AI and Machine Learning Technologies Expected to Play a Key Role in Expanding Multi Billion Dollar Digital Banking Sector: Report - Crowdfund Insider - October 19th, 2020
- AutoML Alleviates the Process of Machine Learning Analysis - Analytics Insight - October 19th, 2020
- Futurism Reinforces Its Next-Gen Business Commerce Platform With Advanced Machine Learning and Artificial Intelligence Capabilities - Yahoo Finance - October 19th, 2020
- Purebase Enhances Its Board of Advisors with An Expert on Machine Learning and Cheminformatics - GlobeNewswire - October 19th, 2020
- COVID-19 And The Role Of AI, Machine Learning In Logistics: A Conversation With Delhivery CTO Kapil Bharati - Mashable India - October 19th, 2020
- How to Beat Analysts and the Stock Market with Machine Learning - Knowledge@Wharton - October 19th, 2020
- AI and Machine Learning Can Help Fintechs if We Focus on Practical Implementation and Move Away from Overhyped Narratives, Researcher Says - Crowdfund... - October 19th, 2020
- Proximity matters: Using machine learning and geospatial analytics to reduce COVID-19 exposure risk - Healthcare IT News - September 20th, 2020
- PREDICTING THE OPTIMUM PATH - Port Strategy - September 20th, 2020
- What is 'custom machine learning' and why is it important for programmatic optimisation? - The Drum - September 20th, 2020
- How Machine Learning is Set to Transform the Online Gaming Community - Techiexpert.com - TechiExpert.com - September 20th, 2020
- Current and future regulatory landscape for AI and machine learning in the investment management sector - Lexology - September 20th, 2020
- Global Machine Learning Courses Market Research Report 2015-2027 of Major Types, Applications and Competitive Vendors in Top Regions and Countries -... - September 20th, 2020
- When AI in healthcare goes wrong, who is responsible? - Quartz - September 20th, 2020
- Is Wide-Spread Use of AI & Machine Intelligence in Manufacturing Still Years Away? - Automation World - September 20th, 2020
- How do we know AI is ready to be in the wild? Maybe a critic is needed - ZDNet - September 20th, 2020
- Solving the crux behind Apple's Silicon Strategy - Medium - September 20th, 2020
- Boost Your Animation To 60 FPS Using AI - Hackaday - September 20th, 2020
- 50 Latest Data Science And Analytics Jobs That Opened Last Week - Analytics India Magazine - September 20th, 2020
- Algorithms may never really figure us out thank goodness - The Boston Globe - September 20th, 2020
- Why Deep Learning DevCon Comes At The Right Time - Analytics India Magazine - September 20th, 2020
- Six notable benefits of AI in finance, and what they mean for humans - Daily Maverick - September 20th, 2020
- Twitter is looking into why its photo preview appears to favor white faces over Black faces - The Verge - September 20th, 2020
- 8 Trending skills you need to be a good Python Developer - iLounge - September 20th, 2020
- Automation Continuum - Leveraging AI and ML to Optimise RPA - Analytics Insight - September 20th, 2020
- UT Austin Selected as Home of National AI Institute Focused on Machine Learning - UT News | The University of Texas at Austin - August 27th, 2020
- Participation-washing could be the next dangerous fad in machine learning - MIT Technology Review - August 27th, 2020
- Getting to the heart of machine learning and complex humans - The Irish Times - August 27th, 2020
- Air Force Taps Machine Learning to Speed Up Flight Certifications - Nextgov - August 27th, 2020
- The Role of Artificial Intelligence and Machine Learning in the... - Insurance CIO Outlook - August 27th, 2020
- AI and Machine Learning Network Fetch.ai Partners Open-Source Blockchain Protocol Waves to Conduct R&D on DLT - Crowdfund Insider - August 27th, 2020
- AI may not predict the next pandemic, but big data and machine learning can fight this one - ZDNet - August 27th, 2020
- Machine Learning Artificial intelligence Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2020-2027 -... - August 27th, 2020
- Explainable AI: From the peak of inflated expectations to the pitfalls of interpreting machine learning models - ZDNet - August 27th, 2020