Page 21«..10..20212223..»

Archive for the ‘Quantum Computing’ Category

RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away – The Register

Posted: April 10, 2020 at 2:51 am


without comments

Quantum computers pose an "urgent but manageable" threat to the security of modern communications systems, according to a report published Thursday by influential US RAND Corporation.

The non-profit think tank's report, "Securing Communications in the Quantum Computing Age: Managing the Risks to Encryption," urges the US government to act quickly because quantum code-breaking could be a thing in, say, 12-15 years.

If adequate implementation of new security measures has not taken place by the time capable quantum computers are developed, it may become impossible to ensure secure authentication and communication privacy without major, disruptive changes, said Michael Vermeer, a RAND scientist and lead author of the report in a statement.

Experts in the field of quantum computing like University of Texas at Austin computer scientist Scott Aaronson have proposed an even hazier timeline.

Noting that the quantum computers built by Google and IBM have been in the neighborhood of 50 to 100 quantum bits (qubits) and that running Shor's algorithm to break public key RSA cryptosystems would probably take several thousand logical qubits meaning millions of physical qubits due to error correction Aaronson recently opined, "I dont think anyone is close to that, and we have no idea how long it will take."

But other boffins, like University of Chicago computer science professor Diana Franklin, have suggested Shor's algorithm might be a possibility in a decade and a half.

So even though quantum computing poses a theoretical threat to most current public-key cryptography and less risk for lattice-based, symmetric, privacy key, post-quantum, and quantum cryptography there's not much consensus about how and when this threat might manifest itself.

Nonetheless, the National Institute of Standards and Technology, the US government agency overseeing tech standards, has been pushing the development of quantum-resistant cryptography since at least 2016. Last year it winnowed a list of proposed post-quantum crypto (PQC) algorithms down to a field of 26 contenders.

The RAND report anticipates quantum computers capable of crypto-cracking will be functional by 2033, with the caveat that experts propose dates both before and after that. PQC algorithm standards should gel within the next five years, with adoption not expected until the mid-to-late 2030s, or later.

But the amount of time required for the US and the rest of the world to fully implement those protocols to mitigate the risk of quantum crypto cracking may take longer still. Note that the US government is still running COBOL applications on ancient mainframes.

"If adequate implementation of PQC has not taken place by the time capable quantum computers are developed, it may become impossible to ensure secure authentication and communication privacy without major, disruptive changes to our infrastructure," the report says.

RAND's report further notes that consumer lack of awareness and indifference to the issue means there will be no civic demand for change.

Hence, the report urges federal leadership to protect consumers, perhaps unaware that Congress is considering the EARN-IT Act, which critics characterize as an "all-out assault on encryption."

"If we act in time with appropriate policies, risk reduction measures, and a collective urgency to prepare for the threat, then we have an opportunity for a future communications infrastructure that is as safe as or more safe than the current status quo, despite overlapping cyber threats from conventional and quantum computers," the report concludes.

It's worth recalling that a 2017 National Academy of Sciences, Engineering, and Medicine report, "Global Health and the Future Role of the United States," urged the US to maintain its focus on global health security and to prepare for infection disease threats.

That was the same year nonprofit PATH issued a pandemic prevention report urging the US government to "maintain its leadership position backed up by the necessary resources to ensure continued vigilance against emerging pandemic threats, both at home and abroad."

The federal government's reaction to COVID-19 is a testament to the impact of reports from external organizations. We can only hope that the threat of crypto-cracking quantum computers elicits a response that's at least as vigorous.

Sponsored: Webcast: Build the next generation of your business in the public cloud

Go here to see the original:

RAND report finds that, like fusion power and Half Life 3, quantum computing is still 15 years away - The Register

Written by admin

April 10th, 2020 at 2:51 am

Posted in Quantum Computing

Microsoft invests in PsiQuantum, a startup which is building the worlds first useful quantum computer – MSPoweruser – MSPoweruser

Posted: at 2:51 am


without comments

Microsoft has been working on quantum computers for several years now. Last year, Microsoft announced Azure Quantum, a full-stack, open cloud ecosystem that will bring the benefits of quantum computing organizations.Microsoft launched Quantum Network, a global community of individuals and organizations working together to advance quantum computing. The Microsoft Quantum Network members will work with Microsoft to learn about, research, and launch quantum computing applications and hardware supported with access to the Quantum Development Kit, vital research and experts, exclusive access to Azure services, and workshops on quantum programming and algorithm development.

Yesterday, Telegraph reported that Microsofts venture capital arm M12 invested in PsiQuantum, a startup with the goal to build the worlds first useful quantum computer out of conventional silicon chips that process information using individual photons as well as electronics. This means that every single component of the quantum computer is made by the same factories and assembled on the same production lines as your laptop or smartphone. PsiQuantum have assembled a team of more than 100 engineers with expertise across all aspects of silicon manufacturing and error corrected quantum computing.

Its worth noting that PsiQuantums approach is different from Microsofts efforts in topological qubits (Microsofts approach would enable error correction in hardware via topological protection from local noise). PsiQuantum and Microsoft have different sets of engineering challenges to address with their distinct approaches, but the companies share the vision for a scalable, fault tolerant quantum computer, said Samir Kumar from M12.

Source: PsiQuantum

Some links in the article may not be viewable as you are using an AdBlocker. Please add us to your whitelist to enable the website to function properly.

View original post here:

Microsoft invests in PsiQuantum, a startup which is building the worlds first useful quantum computer - MSPoweruser - MSPoweruser

Written by admin

April 10th, 2020 at 2:51 am

Posted in Quantum Computing

Securing IoT in the Quantum Age – Eetasia.com

Posted: at 2:51 am


without comments

Article By : Maurizio Di Paolo Emilio

Quantum computers will make security mechanisms vulnerable to new types of cyberattacks a problem for both chip cards and complex technological systems...

Quantum computers will make current security mechanisms vulnerable to new types of cyberattacks a real problem for both chip cards and complex technological systems such as networked vehicles or industrial control systems. They have the potential to break the cryptographic patterns widely used in internet of things data communication systems.

With the advent of quantum computers, modern encryption algorithms are undergoing an evolution that will significantly change their current use. In order to support the security of the internet and other cryptographic-based technologies, it is necessary to increase mathematical research to build the cryptography of tomorrow, which is resistant to quantum attacks and will become known as post-quantum or quantum-resistant cryptography.

A quantum computer that could break cryptography would be a powerful tool for attackers, said Dr. Thomas Poeppelmann, senior staff engineer, Infineon Technologies.

According to the latest Thales Data Threat Report, 72 percent of the security experts surveyed worldwide believe that quantum computing power will affect data security technologies within the next five years. Robust and future-proof security solutions are therefore necessary. The potential threats are widespread, everything from the cars of the future to industrial robots.

IoT security

The modern use of cryptography aims to help ensure the confidentiality, authenticity, and integrity of the multiple data traveling in the IoT ecosystem, both the consumer and industrial one.

Security requirements of IoT devices can be very complex, said Poeppelmann. As a result, security cannot be achieved by a single technology or method. For example, a vendor has to consider aspects like secured software development, protected patch management, supply chain security, protection against physical attacks, trust and identity management, and secured communication.

Many companies, such as Infineon, are developing chip-based quantum security mechanisms. In particular, the applicability and practical implementation of quantum security cryptographic methods for embedded systems will be highlighted.

An IoT device has to check that a software update is really from the vendor and that it was not created by an attacker, said Poeppelmann. If the cryptographic methods used in an IoT device can be broken by an attacker, this would expose it to a lot of vulnerabilities. With quantum-safe cryptography, we want to provide our customers with cryptographic methods that are even protected against attacks using quantum computers. With our post-quantum technology, we aim to provide security in the long term and against very powerful attackers.

A classic computer attacker can use all the necessary means, such as artificial intelligence and increasingly powerful computers, to defeat security barriers.

Depending on the results and tasks, an attacker may be willing to spend several months of work to break a cryptographic pattern. Developers must provide maximum security that is accessible and easy-to-integrate solutions.

The security industry is developing cryptography that can be executed on cost-efficient classical computers or even tiny smart card chips while being guarded against even the most powerful attackers, said Poeppelmann.

He added, This situation is also applicable to the development of post-quantum cryptography that should withstand quantum computing power. The defender could still be implementing cryptography on classical computers and machines, while the attacker may use a quantum computer in the near future. Current approaches for so-called quantum-key distribution [QKD], where quantum technology is used to achieve confidentiality, are currently too expensive or too constraining, whereas current assessments of post-quantum cryptography prove that it could be quantum-safe as well as affordable. This is why we at Infineon focus on the development of post-quantum cryptography [PQC].

Security for IoT (Image: Infineon Technologies)

Large-scale QKD technology has already been tested in several countries to provide secure quantum protection to critical infrastructures.

Today, cryptography is used in many applications in automobiles and industrial control equipment. This aims to prevent the transfer of malware that could disrupt security systems and seriously endanger independent driving and production equipment.

Conventional encryption tools such as elliptical curve encryption are indestructible for todays computers. However, with constant progress in the development of quantum computers, many encryption algorithms may become ineffective in the near future.

Projects

The project Aquorypt will investigate the applicability and practical implementation of quantum-safe cryptographic methods for embedded systems. The project team evaluates procedures that have an adequate security level and implements them efficiently in hardware and software. The results could be used to protect industrial control systems with a long service life.

In the Aquorypt research project, the Technical University of Munich (TUM) will collaborate with researchers and industrial partners to develop new protection measures for the quantum computing era.

The project will first assess several new protocols and check if the new protocols are suitable for the use cases; i.e. industrial control and chip cards, said Poeppelmann. The best way to build a secured system is always a combination of appropriate software and hardware methods. However, some security goals cannot be achieved if the underlying hardware is not secured. Some bugs cannot be fixed by software alone.

Another project, PQC4MED, is focused on embedded systems in medical products. The associated hardware and software must allow the exchange of cryptographic procedures to counteract external threats. The solution will be tested in a use case in the field of medical technology.

In health-care applications, data privacy and data security are of particular importance, said Poeppelmann. Moreover, these devices have been in the field for a very long time so that software needs to be updated to comply with the latest regulations. As a consequence, it is important to first understand how suppliers of health-care devices could handle the threats caused by attacks using quantum computers. And secondly, [it is important] to research how they can implement software updates and software management mechanisms that allow [protection of] a device over its life cycle of more than 20 years. If the security of the update mechanism is low, an attacker will always take the path of least resistance and attack this component.

Infineon is working in this field for the development and standardization of New Hope and SPHINCS+ quantum security cryptographic schemes. New Hope is a key exchange protocol based on the Ring-Learning-with-Errors (Ring-LWE, or RLWE) problem.

Ring-LWE has been designed to protect against cryptoanalysis of quantum computers and also to provide the basis for homomorphic encryption. A key advantage of RLWE-based cryptography is in the size of the public and private keys.

SPHINCS+ is a stateless hash-based signature scheme based on conservative security assumptions.

Googles quantum computer

Conclusion

Cyberattacks on industrial plants could lead to the theft of knowledge about production processes or to tampering plants with a loss of production efficiency. Over time, electronic systems will become increasingly more networked and information security will play a key role.

As for security, post-quantum cryptography now mainly needs standards and awareness, said Poeppelmann. The standards are required to grant interoperability of different systems; e.g., an IoT device communicating with a cloud system. Device manufacturers, on the other hand, should be aware that quantum computers can become a real threat to their solutions security. They should assess future risks as properly [as possible] and implement appropriate security as early as possible.

In addition to security, a second factor in determining whether a cryptographic algorithm can be used in a given application environment is its efficiency. The performance takes into account not only processing speed but also memory requirements: key size, data expansion speed, signature size, etc. For example, schemes based on more structured mathematical problems tend to have reduced keys.

Quantum technology such as quantum computers or quantum sensors have different requirements for market adoption, said Poeppelmann. For the adoption of quantum computers, we need a computer that is really able to prove a benefit for real-world tasks (e.g., chemical analysis, AI, etc.) over currently used cloud methods. In general, it is important to raise awareness to foster market adoption of quantum-resistant cryptography. The threat is real, but with PQC, we have a migration path available.

Improving the strength of encryption remains a goal for many IT security experts. As computers become smarter and faster and codes become easier to decode, a more advanced encryption mechanism is more urgently needed.

See original here:

Securing IoT in the Quantum Age - Eetasia.com

Written by admin

April 10th, 2020 at 2:51 am

Posted in Quantum Computing

More free, discounted tech for governments responding to COVID-19 – GCN.com

Posted: at 2:51 am


without comments

More free, discounted tech for governments responding to COVID-19

Cloud contributions

Splunk is offering a free program, Remote Work Insights, to help new and existing federal, state and local government agency customers manage applications, monitor business performance and secure networks from remote locations. RWI provides real-time visibility across multiple disparate systems, such as VPN and Microsoft 365, alongside executive-level dashboards to boost productivity of mission-critical activities. RWI can be used as a standalone dashboard and platform for best practices or as an add-on for current Splunk customers. Read more here.

Digital Ocean, a cloud infrastructure provider, is donating $100,000 in infrastructure credits as well as promotion and publicity for new, not-for-profit projects related to COVID-19. Examples of potential projects include applications or online resources designed toeducate, coordinate help ortrack the virus; hackathonsor virtual challenges; tools that support online education; or projects that help small businesses impacted by the virus. More here.

Researchers working on COVID-19 diagnostics, treatments and vaccines can apply for a free license to Lifebit Biotechs Lifebit CloudOS, an end-to-end fully federated cloud operating system specifically engineered for life sciences data access, collaboration, and analysis.

Other free cloud resources for COVID-19 applications can be found here.

Security

Identity, an intelligent identity solutionprovider for the enterprise, is offering new customers six months of free cloud single sign-on and multi-factor authentication services for unlimited applications. More info here.

BlackBerry will be offering a range of its secure communication solutions, including SecuSUITE for Government, free of charge for a 60-day period to help organizations manage and secure remote employees.Read more here.

Transit infrastructure

To support cities and businesses that deliver transportation services, Ford Mobility subsidiaries TransLoc, Ride Systems and DoubleMap are offering transit agencies free consulting and demand-response software to help them quickly deploy a responsive service to support evolving rider needs and adhere to quickly-changing health guidelines.Apply here.

Traffic analytics company StreetLight Data is offering free access to its new Vehicles Miles Traveled application to help transportation planners measure the transportation-related impact of the pandemic on communities that depend on gas taxes for revenue. StreetLight worked with Cuebiq, a location intelligence firm to transform GPS data into contextualized, aggregated and normalized travel patterns and build deep repositories of historical VMT data. The map and data will be accessible for free to all planners, researchers and engineers, as well as the general public and StreetLight's current customers.

Communications and outreach

Email solutions provider Validity announced Validity for Good, a free crisis communications program for government agencies and organizations that send critical emails, such as those related to the coronavirus pandemic. With Validity for Good, agencies and organizations are temporarily granted access to the companys email delivery certification offeringthat gives email campaigns trusted treatment to help ensure that critical emails related to public safety and COVID-19 arrive in inboxes, not spam folders.

Aisera, an AI-enabled customer experience company, announced that it is offering its remote working virtual assistant and collaboration app free for 60 days to help health care organizations, government agencies and businesses provide customer service during the global pandemic. More here.

Granicus, a provider of cloud-based citizen engagement services for the public sector, announced a new set of easily embeddable web tools that aggregate, curate and present COVID-19 content from trusted government sources for widespread community access. These FedRAMP authorized tools are free for a limited time and are available to any local, state or federal government organization to use on their website for COVID-19 related communications. More info.

High performance help

D-Wave Systems, a manufacturer of quantum computers, is offering free access to its Leap 2 hybrid quantum cloud service to anyone whos working on responses to the coronavirus outbreak in the 35 countries across North America, Europe, and Asia where access is available. Leap 2 includes the hybrid solver service designed to bring both classical and quantum resources to quickly and precisely solve highly complex problems with up to 10,000 fully connected variables.

Read more:

More free, discounted tech for governments responding to COVID-19 - GCN.com

Written by admin

April 10th, 2020 at 2:51 am

Posted in Quantum Computing

Quantum Computing Startup Raises $215 Million for Faster Device – Bloomberg

Posted: April 6, 2020 at 5:59 pm


without comments

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing

How quantum computing will be used to model elections – TechRepublic

Posted: at 5:59 pm


without comments

Quantum computing is being used to predict US elections. Futurist Isaac Arthur explains how.

Dan Patterson, a Senior Producer for CBS News and CNET, interviewed futurist Isaac Arthur about quantum computing and election predictions. The following is an edited transcript of the interview.

Isaac Arthur: We had, in the 2016 model, for instance--regardless of what other errors might've come in during sampling on that--we had models that would predict a Clinton win by about nine-to-one odds. And yet, when they ran those exact same models through--which are much more difficult when you're looking at individual states--every state has a chance to win or lose by so much. These all have to be shuffled together with individual probabilities, and we use approximations to make that easier.

We don't have to do that with quantum computing. We used an [Unsupervised Deep] Learning model called a Boltzmann machine, which we probably should save for another occasion. That one predicted--using the exact same data and the same general trends--actually showed Trump more likely to win that election by about two-to-one, in some cases, but certainly not 10-to-one against.

SEE: The ethical challenges of AI: A leader's guide (free PDF) (TechRepublic)

This is an example. You can imagine how many other things we can use this for, in terms of very parallel cases. With the current US system--50 states plus [Washington] D.C.--each one of those wins are toned. You have to pull each of those pieces individually, and so you don't get a very small sample from that. Trying to add those all together on the various combinations and pull mutations becomes very difficult to do on a classic computer. There are just too many scenarios. So we again, we approximate.

The biggest thing about a quantum computer--and you were saying earlier about parallel processing. It's not running a bunch of processes simultaneously; it's running all of the processes simultaneously. Every single option that could be put in that, is simultaneously happening. What we do is try to remove all the ones that we can that we don't want to see, so that we only get the actual desired one that comes through to us, when we look at it.

Be in the know about smart cities, AI, Internet of Things, VR, AR, robotics, drones, autonomous driving, and more of the coolest tech innovations. Delivered Wednesdays and Fridays

Image: Getty Images/iStockphoto

See more here:

How quantum computing will be used to model elections - TechRepublic

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing

Quantum Computing: What You Need To Know – Inc42 Media

Posted: at 5:59 pm


without comments

Quantum computers can process massive, complex datasets more efficiently and effectively than classical computers

Quantum computers has tremendous applications

With time, the tech will get democratised and trickle down to the consumer

There is a huge wave of research currently being done in the field of Quantum Computing. This research might just be the pioneering technological breakthrough that will enhance our future beyond what we can comprehend. Before we talk about what it is, lets get a bit of context.

Putting his pulse on the emerging trends, Gordon Moore, founder of Intel, figured that computing power would increase in power and decrease in cost exponentially with time. This became the basis of what is known as Moores Law, a golden rule for the electronics industry, and clarion call innovation. Since then Moores law has barely faltered in its unrelenting march. However, computing is now en route to hitting a wall.

Moores law is slowing down Computing power isnt increasing as quickly as it used to. Classical computers are turning out to be inefficient at solving many new problems like optimising multiple variables for decisions or simulating complex models.

These problems need computers to flip through multiple solutions and make myriad computations. Classical computers arent able to compute as quickly as these problems demand because they have to compute sequentially, or with limited parallelism

Most believe the way to overcome this barrier is by inventing a completely new paradigm of computing quantum computing.

What exactly is Quantum computing? Simply put, Quantum computers can process massive, complex datasets more efficiently and effectively than classical computers. In Classical computers, data for information processing is encoded into binary digits (bits) and have a value or state of either a 0 or 1.

In quantum computing, data is encoded in quantum bits (qubits) which can have values of 0, 1, or any quantum superposition of the two-qubit states. What this means is the bit can be both 0 and 1 at the same time.

Lets use a simple example to illustrate the potential. Imagine you have just gone grocery shopping and have bought 4 items of varying size. You also have one bag to place all four into. One has to select the most optimum way to fill the bag as to not damage the groceries.

Assuming you have no knowledge of which combination works and how the items interact with each other, it only makes sense for you to try all possible arrangements one by one and see which one gives you the best results.

But going through each arrangement one by one will take time, since there are 24 possible arrangements. What if you could have 24 helpers who could simultaneously fill up 24 bags with one of the arrangements and shout out the result to you?

Then you could find the optimal arrangement in the time of essentially filling one bag. Thats what a quantum computer allows you to do. It allows you to access all possible states and variables parallelly and not just sequentially.

I believe this power of Quantum Computers has tremendous applications. Over the next 5 decades, I believe we will reach an inflexion point of qubit capability. The initial machines will be accessible to enterprises, which will spawn an ancillary industry of complementary tools that provide easier interfaces to computers through classical computers.

With time, the tech will get democratised and trickle down to the consumer. An industry around QC software and algorithms will then have truly arrived.

As the number of qubits in quantum computers increase, we will first start seeing optimisation and data access problems being solved first. For example, with enough qubits, we could use quantum computers to assemble and sort through all possible gene variants parallelly and find all pairs of nucleotides the building blocks of DNA and sequence the genome in a very short period of time.

This would revolutionise the health industry as sequencing the DNAs at scale would allow us to understand our genetic makeup at a deeper level. The results of access to that kind of knowledge are unfathomable.

Next, through significant improvements in our quantum capacity, we will be able to use quantum computers for simulating complex systems and behaviours in near real-time and with high fidelity.

Imagine simulating the earths winds and waves with such accuracy so as to predict storms days before they come. Imagine simulating how the winds on a particular day would interact with a flight on a particular day and route it would allow us to measure turbulence, optimise flight paths, and better in advance.

Regardless of the path we take, Quantum Computing is here to stay. Its a key piece in the puzzle that is human growth. 10 years, 100 years, or maybe even a 1,000 years down, we will wonder how we lived without them.

Note: The views and opinions expressed are solely those of the author and does not necessarily reflect the views held by Inc42, its creators or employees. Inc42 is not responsible for the accuracy of any of the information supplied by guest bloggers.

Read this article:

Quantum Computing: What You Need To Know - Inc42 Media

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing

Here’s when we can expect the next major leap in quantum computing – TechRepublic

Posted: at 5:59 pm


without comments

What's up next for quantum computing? Possibly weather forecasting and online dating.

Dan Patterson, a Senior Producer for CBS News and CNET, interviewed futurist Isaac Arthur about what's next for quantum computing. The following is an edited transcript of the interview.

Isaac Arthur: It's always hard to guess with computers, and we're a little bit spoiled by Moore's Law from the fifties and sixties just taking us from these really simple devices to what we have nowadays.

We do not want to make the same mistake we made with, for instance, nuclear fission and fusion where we got the development in 20 years and just assume the next one will get to us in another 20.

Quantum computing might be many decades before we see any real major progress, but at the moment, we have made quite a few major leaps and actually are doing some real calculations with this.

SEE:Managing AI and ML in the enterprise 2020 (free PDF) (TechRepublic)

We have a whole bunch of problems in terms of making it better, though. The biggest one is actually getting the right answer out of it. As an example, if we were using the random source before--let's say I locked somebody inside a quantum box with a phone book, and I told them, 'I want you to find a phone number, and if you call this correct phone number and here's the phone number in this book, someone's going to come by and let you out of this box.'

That person is then given a random number generator, and we shut the box, and they search. A whole bunch of different quantum ghosts of them appear, searching various pages, but the one who finds the right one calls that, and the person comes and opens the door. That's one example of a data extraction, though that would never work in actual reality because quantum doesn't do both on the macroscopic scale, but you can get errors from things like that.

First, imagine one of these quantum people searching that page didn't call the right number, but instead accidentally called a pizza delivery place that showed up and opened the door to deliver a pizza. Now, we have a wrong answer. We have things like this happen with quantum computing where we have an error, in terms of the data. We used to have this with normal computing too, but we solved it fairly early on.

This is probably going to be a lot harder to do, and in many ways, it's the hardest part other than actually keeping all of these protocols entangled. It's not just trying to keep one particle like this. We have to keep several thousand potentially--or millions--all entangled with each other simultaneously. This also allows them to be at just a hair above absolute zero temperature-wise. And then, of course, we have our third problem that has to be overcome, which is the software.

SEE: Augmented reality for business: Cheat sheet (free PDF) (TechRepublic)

All this runs on algorithms being had on class computers fed into these things, and those algorithms are the only way that we still have to do a lot of work on to improve them because we're not quite using the original pure algorithms like Shor's [algorithm], but ones we've had to adapt along the way. Those are kind of three areas--the software and the hardware areas are the ones that are going to really control limitations on advancing.

How much bigger can we make the entangled system? How well can we actually pull the right answer, and how do we actually get the right algorithms to ask the right question, as well?

What we tend to think--you know, with the modern phone and the laptop--that this would be something you have at your home, that you'd have a quantum computer, but in fact you probably never actually have a quantum computer in someone's house. They have to be run at such very low temperatures. Even though they are very small devices in terms of the entanglement, there's so much associated equipment that isn't likely to get too miniaturized. Most likely, you would always have class computers, and people access it through the cloud, and you'd just buy time--or get time--on a quantum computer that you will link up to.

The thing that we're most likely--for one individual person to use, would probably be something like encryption, but for stuff that we would actually get to see on our computer would probably be stuff like weather forecasting, for instance. It has a lot of options to allow us to do way better weather forecasting than we do now.

There are a lot of other examples in terms of the science; there are great things. It might finally let us model how the lifestyle of abiogenesis in the deep oceans, which is one of those examples where our models can't really be. We have approximation algorithms that we use to cover these really huge numbers, but they don't really seem to be up to snuff for covering things like those chemical interactions in the early deep oceans, and then those same algorithms, ironically enough, would be the kind of things we'd use for dating services in terms of finding the most optimal match for a person based on not just a simplified number of traits.

We have to simplify traits, normally. Here, we could actually have a thousand different traits with a thousand different subtypes, and a quantum computer could actually match up and optimize all of those. And then of course, there's the possibility of using election modeling.

Be in the know about smart cities, AI, Internet of Things, VR, AR, robotics, drones, autonomous driving, and more of the coolest tech innovations. Delivered Wednesdays and Fridays

Image: Getty Images/iStockphoto

View post:

Here's when we can expect the next major leap in quantum computing - TechRepublic

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing

Quantum computing at the nanoscale – News – The University of Sydney

Posted: at 5:59 pm


without comments

Sometimes youd be the only person in the world with this new piece of knowledge. Its a pretty wild feeling

Professor David Reilly

Its been said that quantum computing will be like going from candlelight to electric light in the way it will transform how we live. Quite a picture, but what exactly is quantum computing?

For the answer to that question, well have to visit a scale of existence so small that the usual rules of physics are warped, stretched and broken, and there are few layperson terms to lean on. Strap yourself in.

Luckily, we have a world-leading researcher in quantum computing, Professor David Reilly, to guide us. Most modern technologies are largely based on electromagnetism and Newtonian mechanics, says Reilly in a meeting room at the Universitys Nano Hub. Quantum computing taps into an enormous new area of nano physics that we havent harnessed yet.

With his youthful looks and laid-back demeanour, Reilly isnt how you might picture a quantum physicist. He has five Fender guitars (with not much time to play them), and a weakness for single malt Scotches. That said, science has never been far below the surface. As a child, he would pull apart flashlights to see how they worked. During his PhD years, knowledge was more important than sleep; he often worked past 3am to finish experiments.

Sometimes youd be the only person in the world with this new piece of knowledge. Its a pretty wild feeling. A good place to start the quantum computing story is with the humble transistor, which is simply a switch that allows, blocks or varies the flow of electricity, or more correctly, electrons. Invented in 1947, it replaced the large, energy-hungry vacuum tubes in radios and amplifiers, also finding its way into computers.

This off/on gate effect of transistors is the origin of the zeroes and ones idea in traditional (aka classical) computers. Ever-shrinking transistors are also how computers have gone from room-filing monsters to tiny devices in our pockets currently, just one square millimetre of computer chip can hold 100 million transistors.

Incredible, yes, but also unsustainable. With transistors now operating at the size of atoms, they literally cant get much smaller, and theyre now at a scale where the different, nanoscale laws of physics are warping and compromising their usefulness. At that scale, an electron stops behaving like a ball being stopped by the transistor gate, Reilly says. Its more like a wave. It can actually tunnel through or teleport to the other side, so the on/off effect is lost.

Quantum computing seeks to solve this problem, but it also promises a great leap forward. Its based on the idea that transistors can be replaced by actual atomic particles where the zeros and ones arent predicated on the flow or non-flow of electrons, but on the property or energy state of the atomic particle itself.

These particles can come from various sources (and are usually engineered in nanoscale devices) but theyre called collectively, qubits. Now things get trickier. Yes, tricker. Where a transistor can be either one or zero, its a weird fact of quantum physics, that a qubit can be one or zero at the same time, like a spinning coin that holds the possibility of both heads and tails.

For a single qubit, this doubles the one-andzero mechanism. And for every qubit added, the one/zero combinations increase exponentially.

Continued here:

Quantum computing at the nanoscale - News - The University of Sydney

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing

Inside the Global Race to Fight COVID-19 Using the World’s Fastest Supercomputers – Scientific American

Posted: at 5:59 pm


without comments

As the director of a global research organization, I feel obligated to use all the resources of cutting-edge science and technology at our disposal to fight this scourge. As a father, I want a lasting solution, one that serves not just in this crisis, but the next. And, as an American and a Spaniard, with family in two hot spots, I want to help. Its as simple as that.

It started with a phone call to the White House on Tuesday, March 17, one that proved to be a catalytic moment for industry, academia and government to act together. This was the same week I received news from my mother that my cousin in Spain had tested positive for coronavirus. Shes a doctor and, just like all medical staff around the world right now, is on the front lines of the fight against this disease. This fight is personal for so many of us.

COVID-19 is deadly serious. This respiratory disease is triggered by a virus from the family of coronaviruses, which was identified in the 1960s but had never made such an assault on humanity. The virus prevents its victims from breathing normally, making them gasp for air. Fever, cough, a sore throat and a feeling of overwhelming fatigue and helplessness follow. Lucky ones recover within a few days; some show only mild or moderately severe symptoms. But some patients are not that lucky. Bulldozing its way through the body, the virus makes the lungs fill up with fluid, and may lead to a rapid death. No one is immune. While the elderly and those with underlying health conditions are more at risk, COVID-19 has taken the lives of people of all ages, some in seemingly good health. The disease is bringing our world to its knees.

But we are resilient, and we are fighting back with all the tools we have, including some of the most sophisticated supercomputers we have ever built. These machinesmore than 25 U.S.-based supercomputers with more than 400 petaflops of computing powerare now available for free to scientists searching for a vaccine or treatment against the virus, through the COVID-19 High Performance Computing Consortium.

It was created with government, academia and industryincluding competitors, working side by side. IBM is co-leading the effort with the U.S. Department of Energy, which operates the National Laboratories of the United States. Google, Microsoft, Amazon and Hewlett Packard Enterprise have joined, as well as NASA, the National Science Foundation, Pittsburgh Supercomputing Center and six National LabsLawrence Livermore, Lawrence Berkeley, Argonne, Los Alamos, Oak Ridge and Sandia, and others. And then there are academic institutions, including MIT; Rensselaer Polytechnic Institute; the University of Texas, Austin; and the University of California, San Diego.

The supercomputers will run a myriad of calculations in epidemiology, bioinformatics and molecular modeling, in a bid to drastically cut the time of discovery of new molecules that could lead to a vaccine. Having received proposals from all over the world, we have already reviewed, approved and matched 15 projects to the right supercomputers. More will follow.

But just a few days ago none of this existed.

On March 17, I called Michael Kratsios, the U.S. governments chief technology officer. Embracing the potential of a supercomputing consortium, he immediately started mobilizing his team, including Jake Taylor, assistant director for quantum information science at the White House Office of Science and Technology Policy. Jake called major U.S. players that have high-performance computers and invited them on board. From the IBM side, Mike Rosenfield, whose team has designed and built multiple generations of world-leading supercomputers, partnered with RPI, MIT and the key computing leaders of the U.S. National Laboratories. The U.S. Department of Energy has been a partner from the very beginning, at the heart of it all.

Within 24 hours of that first call, collaborators outlined what it meant to be involved. We brainstormed how we would communicate to research labs worldwide what we could offer in terms of hardware, software and human experts, and how we would get them to submit proposals, and get those matched with just the right supercomputer.

Forty-eight hours passed. On Thursday, March 19, we set up the scientific review committee and the computing matching committee to manage proposals. At least one person from each of the members of the consortium had to be part of the process, all acting fairly and equally. From IBM, Ajay Royyuru joined the merit review committee; he is the leader of our Healthcare and Life Sciences research and together with his team has long been developing novel technologies to fight cancer and infectious diseases.

Ajay, too, has a personal stake in fighting back against COVID-19. In January, his elderly father passed away following a pulmonary illness. Ajay shares his house with his 82-year-old mother, and he worries about keeping her safe from this risk, just like so many of us worry about our parents. His extended family in India is now also confronting the unfolding of the pandemic.

On March 22, less than a week after the first discussion with Kratsios, the White House announced the consortium. Everyone knew that the clock was ticking.

It is still very early days, but Ajay and other reviewers can clearly see from the first wave of proposals that scientists are trying to attack the virus on all frontsfrom drug discovery and development with AI-led simulations to genomics, epidemiology and health systems response. We need to understand the whole life cycle of this virus, all the gearboxes that drive ithow it encounters and infects the host cell and replicates inside it, preventing it from producing vital particles. We need to know the molecular components, the proteins involved in the virus biochemistrythen to use computational modeling to see how we can interrupt the cycle. That's the standard scientific methodology of drug discovery, but we want to amplify it.

The virus has been exploding in humans for months now, providing an abundance of samples for computer modeling and analysis. Scientists are already depositing them into public data sources such as GenBank and Protein Data Bank. There are many unknowns and assumptionsbut, Ajay tells me, a lot of proposals involve using the available protein structures to try and come up with potential molecular compounds that could lead to a therapeutic or a vaccine.

Thats already happening. Even before we formed the consortium, researchers at Oak Ridge National Laboratory and the University of Tennessee simulated 8,000 compounds and found 77 molecules that could potentially disarm the virus. But 77 is still a big number and running tests to find the correct molecule may take months. Here, my colleague Alessandro Curioni, an Italian chemist who heads IBM Research Europe and who had to self-isolate due to possible exposure to COVID-19, had an idea on how to speed things up.

In a conversation with European Commission executives in early March, Alessandro learned about an Italian pharmaceutical company, Domp Farmaceutici and the E.U.-financed project they were working on. Last week, he orchestrated a meeting between its scientists and Oak Ridge, suggesting to both parties that they submit a joint proposal to the consortium. Perhaps together, with the help of supercomputers, they can reduce the number of the promising compounds from 77 to 10, five and, finally, one.

Humanity has more tools at its disposal in this pandemic than ever before. With data, supercomputers and artificial intelligence, and in the future, quantum computing, we will create an era of accelerated discovery. The consortium is an example of a unique partnership approach, and it shows that the bigger the challenge, the more we need each other.

Read more about the coronavirus outbreakhere.

Read this article:

Inside the Global Race to Fight COVID-19 Using the World's Fastest Supercomputers - Scientific American

Written by admin

April 6th, 2020 at 5:59 pm

Posted in Quantum Computing


Page 21«..10..20212223..»



matomo tracker