Page 9«..891011..20..»

Archive for the ‘Quantum Computing’ Category

Quantum Software Market Size by Top Companies, Trends by Types and Application, Forecast to 2028 | Origin Quantum Computing Technology, D Wave, IBM,…

Posted: November 14, 2021 at 1:46 am


without comments

New Jersey, United States,- This Quantum Software market report study describes a productive and motivated sector as well as a market prognosis. Industry players would be able to make smart decisions based on the results of the study. Overall, research is a useful tool for establishing a competitive advantage over competitors and long-term profitability in the existing economy. This Quantum Software market report study provides detailed information on several industrial aspects such as techniques, models and important competitors operating in separate districts. Examiners use point-by-point testing processes to provide accurate and crucial information about the status and progress of the showcase.

Market analysts and researchers have conducted an in-depth analysis of the global bQuantum Software market using research methodologies such as PESTLE and Porter's five forces analysis. They provided accurate and reliable market data and useful recommendations with the aim of helping the players to get an overview of the overall scenario of the present and future market. The report on Quantum Softwares includes an in-depth study of potential segments, including product type, application, and end user, as well as their contribution to the overall market size.

Get | Download Sample Copy with TOC, Graphs & List of [emailprotected]https://www.marketresearchintellect.com/download-sample/?rid=177936

In addition, market revenues based on region and country are provided in the report on Quantum Softwares. The authors of the report also shed light on the common business tactics adopted by actors. The main players in the global bQuantum Software market and their full profiles are included in the report. In addition, investment opportunities, recommendations and current trends in the global Quantum Software market are mapped by the report. Thanks to this report, key players in the global Quantum Software market will be able to make good decisions and plan their strategies accordingly to stay ahead of the curve.

The competitive landscape is an essential aspect that every key player must know. The report highlights the competitive scenario of the global Quantum Software market to know the competition at the national and global levels. The market experts also presented the broad outlines of each major player in the global Quantum Software market, taking into account key aspects such as business areas, production and product portfolio. In addition, the companies in the report are studied according to key factors such as company size, market share, market growth, revenues, production volume and profits.

The major players covered in Quantum Software Markets:

Quantum Software Market Breakdown by Type:

Quantum Software Market breakdown by application:

The Quantum Software market report has been separated according to separate categories, such as product type, application, end-user, and region. Each segment is evaluated on the basis of CAGR, share, and growth potential. In the regional analysis, the report highlights the prospective region, which is expected to generate opportunities in the global Quantum Softwares market in the coming years. This segmental analysis will surely prove to be a useful tool for readers, stakeholders and market participants in order to get a complete picture of the global Quantum Softwares market and its growth potential in the coming years.

Get | Discount On The Purchase Of This Report @ https://www.marketresearchintellect.com/ask-for-discount/?rid=177936

Quantum Software Market Report Scope

Regional market analysis Quantum Software can be represented as follows:

Each regional Quantum Software sectors is carefully studied to understand its current and future growth scenarios. This helps players to strengthen their position. Use market research to get a better perspective and understanding of the market and target audience and ensure you stay ahead of the competition.

The base of geography, the world market of Quantum Software has segmented as follows:

Key questions answered in the report:

For More Information or Query or Customization Before Buying, Visit @ https://www.marketresearchintellect.com/product/global-quantum-software-market-size-forecast/

Visualize Quantum Software Market using Verified Market Intelligence:-

Verified Market Intelligence is our BI-enabled platform to tell the story of this market. VMI provides in-depth predictive trends and accurate insights into more than 20,000 emerging and niche markets to help you make key revenue impact decisions for a brilliant future.VMI provides a comprehensive overview and global competitive landscape of regions, countries, and segments, as well as key players in your market. Showcase your market reports and findings with built-in presentation capabilities, providing more than 70% of time and resources for investors, sales and marketing, R & D, and product development. VMI supports data delivery in Excel and interactive PDF formats and provides more than 15 key market indicators for your market.

Visualize Quantum Software Market using VMI @ hhttps://www.marketresearchintellect.com/mri-intelligence/

The study explores in depth the profiles of the main market players and their main financial aspects. This comprehensive business analyst report is useful for all existing and new entrants as they design their business strategies. This report covers production, revenue, market share and growth rate of the Quantum Software market for each key company, and covers breakdown data (production, consumption, revenue and market share) by regions, type and applications. Quantum Software historical breakdown data from 2016 to 2020 and forecast to 2021-2029.

About Us: Market Research Intellect

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations in addition to the objective of delivering customized and in-depth research studies.We speak to looking logical research solutions, custom consulting, and in-severity data analysis lid a range of industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverages. Etc Our research studies assist our clients to make higher data-driven decisions, admit push forecasts, capitalize coarsely with opportunities and optimize efficiency by bustling as their belt in crime to adopt accurate and indispensable mention without compromise.Having serviced on the pinnacle of 5000+ clients, we have provided expertly-behaved assert research facilities to more than 100 Global Fortune 500 companies such as Amazon, Dell, IBM, Shell, Exxon Mobil, General Electric, Siemens, Microsoft, Sony, and Hitachi.

Contact us:Mr. Edwyne Fernandes US: +1 (650)-781-4080 UK: +44 (753)-715-0008 APAC: +61 (488)-85-9400 US Toll-Free: +1 (800)-782-1768

Website: https://www.marketresearchintellect.com/

Read the rest here:

Quantum Software Market Size by Top Companies, Trends by Types and Application, Forecast to 2028 | Origin Quantum Computing Technology, D Wave, IBM,...

Written by admin

November 14th, 2021 at 1:46 am

Posted in Quantum Computing

Nvidia Declares That It Is A Full-Stack Platform – The Next Platform

Posted: at 1:46 am


without comments

In a decade and a half, Nvidia has come a long way from its early days as a provider of graphics chips for personal computers and other consumer devices.

Jensen Huang, Nvidia co-founder and chief executive officer, put his sights on the datacenter, pushing GPUs as a way of accelerating HPC applications and the CUDA software development environment as a way of making that happen. Five years later, Huang declared artificial intelligencethe future of computing and that Nvidia would not only enable that, but bet the company on this being the future of software development that AI-enhanced everything would be, in fact, the next platform.

The company has continued to evolve, expanding its hardware and software capabilities aimed at meeting the demands of an ever-changing IT landscape that now includes multiple clouds and the fast-growing edge and, Huang expects, a virtual world of digital twins and avatars, and all of this dependent on the companys technologies.

Nvidia has not been a point product provider for some time, but is now a full-stack platform vendor for this new computing world.

Accelerated computing starts with Nvidia CUDA general-purpose programmable GPUs, Huang said during his keynote address at the companys virtual GTC 2021 event this week. The magic of accelerated computing comes from the combination of CUDA, the acceleration libraries of algorithms that speed-up applications and the distributed computing systems and software that scale processing across an entire datacenter.

Nvidia has been advancing CUDA and expanding the surrounding ecosystem for it for more than fifteen years.

We optimize across the full stack, iterating between GPU, acceleration libraries, systems, and applications continuously, all the while expanding the reach of our platform by adding new application domains that we accelerate, he said. With our approach, end users experience speedups through the life of the product. It is not unusual for us to increase application performance by many X-factors on the same chip over several years. As we accelerate more applications, our network of partners see growing demand for Nvidia platforms. Starting from computer graphics, the reach of our architecture has reached deep into the worlds largest industries. We start with amazing chips, but for each field of science, industry and application, we create a full stack.

To illustrate that, Huang pointed to the more than 150 software development kits that target a broad range of industries, from design to life sciences, and at GTC announced 65 new or updated SDKs touching on such areas as quantum computing, cybersecurity, and robotics. The number of developers using Nvidia technologies has grown to almost three million, increasing six-fold over the past five years. In addition, CUDA has been downloaded 30 million times over 15 years, including seven million times last year.

Our expertise in full-stack acceleration and datacenter-scale architectures lets us help researchers and developers solve problems at the largest scales, he said. Our approach to computing is highly energy-efficient. The versatility of architecture lets us contribute to fields ranging from AI to quantum physics to digital biology to climate science.

That said, Nvidia is not without its challenges. The companys $40 billion bid for Arm is no sure thing, with regulators from the UK and Europe saying they want to take a deeper look at the possible market impacts the deal would create and Qualcomm leading opposition to the proposed acquisition. In addition, the competition in GPU-accelerated computing is heating up, with AMD advancing its capabilities we recently wrote about the companys Aldebaran Instinct MI200 GPU accelerator and Intel last week saying that it expects the upcoming Aurora supercomputer will scale beyond 2 exaflops due in large part to a better-than-expected performance by its Ponte Vecchio Xe HPC GPUs.

Still, Nvidia sees its future in creating the accelerated-computing foundation for the expansion of AI, machine learning and deep learning into a broad array of industries, as illustrated by the usual avalanche of announcements coming out of GTC. Among the new libraries was ReOpt, which is aimed finding the shortest and most efficient routes for getting products and services to their destinations, which can save companies time and money in last-mile delivery efforts.

CuQuantum is another library for creating quantum simulators to validate research in the field while the industry builds the first useful quantum computers. Nvidia has built a cuQuantum DGX appliance for speeding up quantum circuit simulations, with the first accelerated quantum simulator coming to Googles Cirq framework coming in the first quarter 2022. Meanwhile, cuNumeric is aimed at accelerating NumPy workloads, scaling from one GPU to multi-node clusters.

Nvidias new Quantum-2 interconnect (which has nothing to do with quantum computing) is a 400 Gb/sec InfiniBand platform that comprises the Quantum-2 switch, the ConnectX-7 SmartNIC, the BlueField 3 DPU, and features like performance isolation, a telemetry-based congestion-control system and 32X higher in-switch processing for AI training. In addition, nanosecond timing will enable cloud datacenters to get into the telco space by hosting software-defined 5G radio services.

Quantum-2 is the first networking platform to offer the performance of a supercomputer and the shareability of cloud computing, Huang said. This has never been possible before. Until Quantum-2, you get either bare-metal high-performance or secure multi-tenancy. Never both. With Quantum-2, your valuable supercomputer will be cloud-native and far better utilized.

The 7 nanometer InfiniBand switch chip holds 57 billion transistors similar to Nvidias A100 GPU and has 64 ports running at 400 Gb/sec or 128 ports running at 200 Gb/sec. A Quantum-2 system can connect up to 2,048 ports, as compared to the 800 ports with Quantum-1. The switch is sampling now and comes with options for the ConnectX-7 SmartNIC sampling in January or BlueField 3 DPU, which will sample in May.

BlueField DOCA 1.2 is a suite of cybersecurity capabilities that Huang said will make BlueField an even more attractive platform for building a zero-trust architecture by offloading infrastructure software that is eating up as much as 30 percent of CPU capacity. In addition, Nvidias Morpheus deep-learning cybersecurity platform uses AI to monitor and analyze data from users, machines and services to detect anomalies and abnormal transactions.

Cloud computing and machine learning are driving a reinvention of the datacenter, Huang said. Container-based applications give hyperscalers incredible abilities to scale out, allowing millions to use their services concurrently. The ease of scale out and orchestration comes at a cost: east-west network traffic increased incredibly with machine-and-machine message passing and these disaggregated applications open many ports inside the datacenter that need to be secured from cyberattack.

Nvidia has bolstered its Triton Inferencing Server with new support for the Arm architecture; the system already supported Nvida GPUs and X86 chips from Intel and AMD. In addition, version 2.15 of Triton also can run multiple GPU and multi-node inference workloads, which Huang called arguably one of the most technically challenging runtime engines the world has ever seen.

As these models are growing exponentially, particularly in new use cases, theyre often getting too big for you to run on a single CPU or even a single server, Ian Buck, vice president and general manager of Nvidias Tesla datacenter business, said during a briefing with journalists. Yet the demands [and] the opportunities for these large models want to be delivered in real time. The new version of Triton actually supports distributed inference. We take the model and we split it across multiple GPUs and multiple servers to deliver that to optimize the computing to deliver the fastest possible performance of these incredibly large models.

Nvidia also unveiled NeMo Megatron, a framework for training large language models (LLMs) that have trillions of parameters. NeMo Megatron can be used for such jobs as language translation and compute program writing, and it leverages the Triton Inference Server. Nvidia last month unveiled Megatron 530B, a language mode with 530 billion parameters.

The recent breakthrough of large language models is one of the great achievements in computer science, Huang said. Theres exciting work being done in self-supervised multi-modal learning and models that can do tasks that it was never trained on called zero-shot learning. Ten new models were announced last year alone. Training LLMs is not for the faint of heart. Hundred-million-dollar systems, training trillion-parameter models on petabytes of data for months requires conviction, deep expertise, and an optimized stack.

A lot of time at the event was spent on Nvidias Omniverse platform, the virtual environment introduced last year that the company believes will be a critical enterprise tool in the future. Skeptics point to avatars and the like in suggesting that Omniverse is little more than a second coming of Second Life. In responding to a question, Buck said there are two areas where Omniverse is catching on in the enterprise.

The first is digital twins virtual representations of machines or systems that recreate an environment like the work were doing in embedded and robotics and other places to be able to simulate virtual worlds, actually simulate the products that are being built in a virtual environment and be able to prototype them entirely with Omniverse. A virtual setting allows the product development to happen in a way that has been before remotely, virtually around the world.

The other is in the commercial use of virtual agents this is where the AI-based avatars can come in to help with call centers and similar customer-facing tasks.

Read more:

Nvidia Declares That It Is A Full-Stack Platform - The Next Platform

Written by admin

November 14th, 2021 at 1:46 am

Posted in Quantum Computing

Bigger quantum computers, faster: This new idea could be the quickest route to real world apps – ZDNet

Posted: July 2, 2021 at 1:52 am


without comments

Rigetti launched the multi-chip device with the objective of reaching 80 qubits later this year, up from the current 31 qubits supported by the company's Aspen processor.

Finding out how to pack as many high-quality qubits as possible on a single quantum processor is a challenge that still keeps most researchers scratching their heads but now quantum startup Rigetti Computing has come up with a radically new approach to the problem.

Instead of focusing on increasing the size of a single quantum processor,Rigetti has linked up various smaller chips together to create, instead, a modular processor that still has a higher overall qubit count.

Describing the technology as the world's "first multi-chip quantum processor", the company launched the device with the objective of reaching 80 qubits later this year, up from the current 31 qubits supported by its Aspen processor.

SEE: Building the bionic brain (free PDF) (TechRepublic)

By that time, the new quantum system will be available for Rigetti customers to use over the firm's Quantum Cloud Services platform.

"We've developed a fundamentally new approach to scaling quantum computers," said Chad Rigetti, the founder of Rigetti Computing. "Our proprietary innovations in chip design and manufacturing have unlocked what we believe is the fastest path to building the systems needed to run practical applications and error correction."

Like IBM and Google, Rigetti's quantum systems are based on superconducting qubits, which are mounted in arrays on a processor where they are coupled and controlled thanks to microwave pulses. Qubits are also connected to a resonator and associated wiring, which enables the system to encode, manipulate and read out quantum information.

Qubits come with special quantum properties that are expected to lend quantum computers unprecedented computational power. But for that to happen, processors will need to pack a significant number of qubits far more than they currently do.

For quantum computers to start generating very early value, experts anticipate that at least 1,000 qubits will be necessary; and a million qubits is often cited as the threshold for most useful applications. In contrast, the most powerful quantum processors currently support less than 100 qubits.

Scaling up the number of qubits sitting on a single processor, however, is difficult. This is mostly due to the fragility of qubits, which need to be kept in ultra-protected environments that are colder than outer space to ensure that they remain in their quantum state. More qubits on a chip, therefore, inevitably mean more potential for failure and lower manufacturing yields.

Instead, Rigetti proposes to connect several identical processors, such as those that the company is already capable of reliably manufacturing, into a large-scale quantum processor.

"This modular approach exponentially reduces manufacturing complexity and allows for accelerated, predictable scaling," said the company.

According to Rigetti, this will also enable future systems to scale in multiplicative ways, as individual chips increase their number of qubits, and new technologies enable more of these chips to be connected into larger processors.

With scale being a top priority for virtually every organization in the quantum ecosystem, Rigetti's new launch could well give the startup a competitive advantage, even in an industry crowded with tech giants the likes of Google, IBM, Microsoft and Amazon.

IBM recently unveiled a roadmap for its quantum hardware thataims to build a 1,121-qubit device for release in 2023.

SEE: Quantum computing just took on another big challenge, one that could be as tough as steel

And smaller players are now emerging, often with the goal of exploring alternatives to superconducting qubits that might enable quantum computers to grow faster. UK start-up Quantum Motion, for instance,recently published the result of an experiment with qubits on silicon chips.

"There is a race to get from the tens of qubits that devices have today, to the thousands of qubits that future systems will require to solve real-world problems," said Amir Safavi-Naeini, assistant professor of applied physics at Stanford University. "Rigetti's modular approach demonstrates a very promising way of approaching these scales."

As demonstrated by Rigetti's latest announcement, new approaches, methods and technologies are constantly developing in the quantum ecosystem. It is unlikely that one clear way forward will stand out anytime soon.

Read more:

Bigger quantum computers, faster: This new idea could be the quickest route to real world apps - ZDNet

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

Quantum computing just took on another big challenge, one that could be as tough as steel – ZDNet

Posted: at 1:52 am


without comments

Nippon Steel has concluded that, despite the current hardware limitations of quantum computers, the technology holds a lot of promise when it comes to optimizing complex problems.

From railways and ships all the way to knives and forks: the number of products that are made of steel is too high to list and to ensure a steady supply of the sought-after material, Japanese steel manufacturer Nippon Steel is now looking at how quantum computing might help.

The company, which produced a hefty 50 million tons of steel in 2019 (that is, 40% of the total production in Japan) has partnered with Cambridge Quantum Computing (CQC) and Honeywell to find out whether quantum computers have the potential to boost efficiencies in the supply chain.

And after over a year of testing and trying new algorithms, the company has concluded that,despite the current hardware limitations of quantum computers, the technology holds a lot of promise when it comes to optimizing complex problems.

"The results Nippon Steel and Cambridge Quantum Computing were able to achieve indicate that quantum computing will be a powerful tool for companies seeking a competitive advantage," said Tony Uttley, the president of Honeywell Quantum Solutions.

SEE: Building the bionic brain (free PDF) (TechRepublic)

The steel manufacturing process is a highly elaborate affair, involving many different steps and requiring various raw materials before the final product can be built.

Plants start by pre-treating and refining iron ore, coal and other minerals to process them into slabs of steel, which are then converted into products like rails, bars, pipes, tubes and wheels.

In the case of Nippon Steel, where millions of tons of material are at stake, finding the best equation to make sure that the right products are in the right place and at the right time is key to delivering orders as efficiently as possible.

Toss in strict deadlines, and it is easy to see why industry leaders are looking for the most advanced tools possible to model and optimize the whole system, and at the same time reduce operating costs.

For this reason, the use of pen and paper has long been replaced by sophisticated software services, and Nippon Steel has been a long-time investor in advanced computing but even today's most powerful supercomputers can struggle to come up with optimal solutions to such complex problems.

Classical computers can only offer simplifications and approximations. The Japanese company, therefore, decided to try its hand at quantum technologies, andannounced a partnership with quantum software firm CQC last year.

"Scheduling at our steel plants is one of the biggest logistical challenges we face, and we are always looking for ways to streamline and improve operations in this area," said Koji Hirano, chief researcher at Nippon Steel.

Quantum computers rely on qubits tiny particles that can take on a special, dual quantum state that enables them to carry out multiple calculations at once. This means, in principle, that the most complex problems that cannot be solved by classical computers in any realistic timeframe could one day be run on quantum computers in a matter of minutes.

The technology is still in its infancy: quantum computers can currently only support very few qubits and are not capable of carrying out computations that are useful at a business's scale. Scientists, rather, are interested in demonstrating the theoretical value of the technology, to be prepared to tap into the potential of quantum computers once their development matures.

In practice, for Nippon Steel, this meant using CQC's services and expertise to discover which quantum algorithms could most effectively model and optimize the company's supply chain.

To do so, the two companies' research teams focused on formulating a small-scale problem, which, although it does not bring significant value to Nippon Steel, can be resolved using today's nascent quantum hardware.

The researchers developed a quantum algorithm for this "representative" problem and ran it on Honeywell's System Model H1 the latest iteration of the company's trapped-ion quantum computing hardware, which has 10 available qubits and a record-breaking quantum volume of 512. After only a few steps, say the scientists, the System Model H1 was able to find an optimal solution.

"The results are encouraging for scaling up this problem to larger instances," said Mehdi Bozzo Rey, the head of business development at CQC. "This experiment showcases the capabilities of the System Model H1 paired with modern quantum algorithms and how promising this emerging technology really is."

What's more: an optimization algorithm such as the one developed by CQC and Nippon Steel can be applied to many other scenarios in manufacturing, transport and distribution.

Earlier this year, for example, IBM and energy giant ExxonMobil revealed that they had been working together tobuild quantum algorithms that could one day optimize the routing of tens of thousands of merchant shipscrossing the oceans to deliver everyday goods a $14 trillion industry that could hugely benefit from operational efficiencies.

The results from Nippon Steel are the first to emerge followingthe announcement of a partnership between Honeywell and CQC earlier this month. CQC's quantum software capabilities are planned to merge with Honeywell's quantum hardware services in a deal that is expected to make waves in the industry.

By joining forces, the two companies are effectively set to become leaders in the quantum ecosystem. The early results from the trials with Nippon Steel, therefore, are likely to be only the start of many new projects to come, as the two firms apply their complementary expertise to global issues affecting various different industries.

See the original post:

Quantum computing just took on another big challenge, one that could be as tough as steel - ZDNet

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

Missing Piece Discovered in the Puzzle of Optical Quantum Computing – SciTechDaily

Posted: at 1:52 am


without comments

Jung-Tsung Shen, associate professor in the Department of Electrical & Systems Engineering, has developed a deterministic, high-fidelity, two-bit quantum logic gate that takes advantage of a new form of light. This new logic gate is orders of magnitude more efficient than the current technology. Credit: Jung-Tsung Shen

An efficient two-bit quantum logic gate has been out of reach, until now.

Research from the McKelvey School of Engineering at Washington University in St. Louis has found a missing piece in the puzzle of optical quantum computing.

Jung-Tsung Shen, associate professor in the Preston M. Green Department of Electrical & Systems Engineering, has developed a deterministic, high-fidelity two-bit quantum logic gate that takes advantage of a new form of light. This new logic gate is orders of magnitude more efficient than the current technology.

In the ideal case, the fidelity can be as high as 97%, Shen said.

His research was published in May 2021 in the journalPhysical Review A.

The potential of quantum computers is bound to the unusual properties of superposition the ability of a quantum system to contain many distinct properties, or states, at the same time and entanglement two particles acting as if they are correlated in a non-classical manner, despite being physically removed from each other.

Where voltage determines the value of a bit (a 1 or a 0) in a classical computer, researchers often use individual electrons as qubits, the quantum equivalent. Electrons have several traits that suit them well to the task: they are easily manipulated by an electric or magnetic field and they interact with each other. Interaction is a benefit when you need two bits to be entangled letting the wilderness of quantum mechanics manifest.

But their propensity to interact is also a problem. Everything from stray magnetic fields to power lines can influence electrons, making them hard to truly control.

For the past two decades, however, some scientists have been trying to use photons as qubits instead of electrons. If computers are going to have a true impact, we need to look into creating the platform using light, Shen said.

Photons have no charge, which can lead to the opposite problems: they do not interact with the environment like electrons, but they also do not interact with each other. It has also been challenging to engineer and to create ad hoc (effective) inter-photon interactions. Or so traditional thinking went.

Less than a decade ago, scientists working on this problem discovered that, even if they werent entangled as they entered a logic gate, the act of measuring the two photons when they exited led them to behave as if they had been.The unique features of measurement are another wild manifestation of quantum mechanics.

Quantum mechanics is not difficult, but its full of surprises, Shen said.

The measurement discovery was groundbreaking, but not quite game-changing. Thats because for every 1,000,000 photons, only one pair became entangled. Researchers have since been more successful, but, Shen said, Its still not good enough for a computer, which has to carry out millions to billions of operations per second.

Shen was able to build a two-bit quantum logic gate with such efficiency because of the discovery of a new class of quantum photonic states photonic dimers, photons entangled in both space and frequency. His prediction of their existence was experimentally validated in 2013, and he has since been finding applications for this new form of light.

When a single photon enters a logic gate, nothing notable happens it goes in and comes out. But when there are two photons, Thats when we predicted the two can make a new state, photonic dimers. It turns out this new state is crucial.

High-fidelity, two-bit logic gate, designed by Jung-Tsung Shen. Credit: Jung-Tsung Shen

Mathematically, there are many ways to design a logic gate for two-bit operations. These different designs are called equivalent. The specific logic gate that Shen and his research group designed is the controlled-phase gate (or controlled-Z gate). The principal function of the controlled-phase gate is that the two photons that come out are in the negative state of the two photons that went in.

In classical circuits, there is no minus sign, Shen said. But in quantum computing, it turns out the minus sign exists and is crucial.

Quantum mechanics is not difficult, but its full of surprises.

Jung-Tsung Shen

When two independent photons (representing two optical qubits) enter the logic gate, The design of the logic gate is such that the two photons can form a photonic dimer, Shen said. It turns out the new quantum photonic state is crucial as it enables the output state to have the correct sign that is essential to the optical logic operations.

Shen has been working with the University of Michigan to test his design, which is a solid-state logic gate one that can operate under moderate conditions. So far, he says, results seem positive.

Shen says this result, while baffling to most, is clear as day to those in the know.

Its like a puzzle, he said. It may be complicated to do, but once its done, just by glancing at it, you will know its correct.

Reference: Two-photon controlled-phase gates enabled by photonic dimers by Zihao Chen, Yao Zhou, Jung-Tsung Shen, Pei-Cheng Ku and Duncan Steel, 21 May 2021, Physical Review A. DOI: 10.1103/PhysRevA.103.052610

This research was supported by the National Science Foundation, ECCS grants nos. 1608049 and 1838996. It was also supported by the 2018 NSF Quantum Leap (RAISE) Award.

The McKelvey School of Engineering at Washington University in St. Louis promotes independent inquiry and education with an emphasis on scientific excellence, innovation and collaboration without boundaries. McKelvey Engineering has top-ranked research and graduate programs across departments, particularly in biomedical engineering, environmental engineering and computing, and has one of the most selective undergraduate programs in the country. With 140 full-time faculty, 1,387 undergraduate students, 1,448 graduate students and 21,000 living alumni, we are working to solve some of societys greatest challenges; to prepare students to become leaders and innovate throughout their careers; and to be a catalyst of economic development for the St. Louis region and beyond.

Originally posted here:

Missing Piece Discovered in the Puzzle of Optical Quantum Computing - SciTechDaily

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

Rare Superconductor Discovered May Be Critical for the Future of Quantum Computing – SciTechDaily

Posted: at 1:52 am


without comments

Research led by Kent and theSTFC Rutherford Appleton Laboratoryhas resulted in the discovery of a new rare topological superconductor, LaPt3P. This discovery may be of huge importance to the future operations of quantum computers.

Superconductors are vital materials able to conduct electricity without any resistance when cooled below a certain temperature, making them highly desirable in a society needing to reduce its energy consumption.

They manifest quantum properties on the scale of everyday objects, making them highly attractive candidates for building computers that use quantum physics to store data and perform computing operations, and can vastly outperform even the best supercomputers in certain tasks. As a result, there is an increasing demand from leading tech companies like Google, IBM and Microsoft to make quantum computers on an industrial scale using superconductors.

However, the elementary units of quantum computers (qubits) are extremely sensitive and lose their quantum properties due to electromagnetic fields, heat, and collisions with air molecules. Protection from these can be achieved by making more resilient qubits using a special class of superconductors called topological superconductorswhich in addition to being superconductors also host protected metallic states on their boundaries or surfaces.

Topological superconductors, such as LaPt3P, newly discovered through muon spin relaxation experiments and extensive theoretical analysis, are exceptionally rare and are of tremendous value to the future industry of quantum computing.

To ensure its properties are sample and instrument independent, two different sets of samples were prepared in theUniversity of Warwickand inETH Zurich. Muon experiments were then performed in two different types of muon facilities: in the ISIS Pulsed Neutron and Muon Source in the STFC Rutherford Appleton Laboratory and inPSI, Switzerland.

Dr. Sudeep Kumar Ghosh, Leverhulme Early Career Fellow at KentsSchool of Physical Sciencesand Principle Investigator said: This discovery of the topological superconductor LaPt3P has tremendous potential in the field of quantum computing. Discovery of such a rare and desired component demonstrates the importance ofmuonresearch for the everyday world around us.

Reference: Chiral singlet superconductivity in the weakly correlated metal LaPt3P by P. K. Biswas, S. K. Ghosh, J. Z. Zhao, D. A. Mayoh, N. D. Zhigadlo, Xiaofeng Xu, C. Baines, A. D. Hillier, G. Balakrishnan and M. R. Lees, 4 May 2021, Nature Communications. DOI: 10.1038/s41467-021-22807-8

The paper is published inNature Communications(University of Kent: Dr. Sudeep K. Ghosh; STFC Rutherford Appleton Laboratory: Dr. Pabitra K. Biswas, Dr. Adrian D. Hillier; University of Warwick Dr. Geetha Balakrishnan, Dr. Martin R. Lees, Dr. Daniel A. Mayoh; Paul Scherrer Institute: Dr. Charles Baines; Zhejiang University of Technology: Dr. Xiaofeng Xu; ETH Zurich: Dr. Nikolai D. Zhigadlo; Southwest University of Science and Technology: Dr. Jianzhou Zhao).

Read the original post:

Rare Superconductor Discovered May Be Critical for the Future of Quantum Computing - SciTechDaily

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

Quantum Computing Breakthrough: Unveiling Properties of New Superconductor – Analytics Insight

Posted: at 1:52 am


without comments

The collaboration of the School of Physics and Astronomy, of the University of Minnesota and Cornell University, has revealed some unique properties of a new semiconductor such as a superconducting metal. It has created a breakthrough in quantum computing and can be utilized in the nearby future. The metal is known as Niobium diselenide (NbSe2) that can conduct electricity or transport electrons or photons without any resistance. Quantum computing can reap the benefits of this new superconducting metal effectively and efficiently for new innovations.

Niobium diselenide is in 2D form with two-fold symmetry that makes it a more resilient superconductor. There are two types of superconductivity found in this metal conventional wave-type consisting of bulk NbSe2 and unconventional d- or p- wave type for a few layers of NbSe2. These both have the same kind of energies due to the constant interaction and competition between each other. The research teams from both universities have combined the results of two different experimental techniques to generate this ground-breaking discovery. The scientists wanted to investigate the properties of NbSe2 further to able to use unconventional superconducting states to develop advanced quantum computers.

Superconducting metals, help to explore the boundaries between quantum computing and traditional computing with applications in quantum information. The quantum bits transform the functionalities of quantum computers with much higher speed than the traditional ones. Quantum bits exist in a superposition state along with two values 0 and 1 simultaneously with alpha and beta. Quantum computers require around 10,000 qubits to work smartly and help in the entanglement of natures mysteries. Superconductors can create a solid state of the qubit with quantum dots and single-donor systems. These superconductor metals are known for transforming electrons into a single superfluid that can move through a metal lattice without any resistance.

The discovery of 2D crystalline superconductors has opened a plethora of methods to investigate unconventional quantum mechanics. The top-notch quality of monolayer superconductor, NbSe2, is grown by chemical vapor deposition. The growth of these superconductors depends on the ultrahigh vacuum or dangling bond-free substrates that help to reduce environment and substrate-induced defects.

Hence, the world is waiting for further discoveries of some unique properties of any superconducting metal to help in the advancement of quantum computing that can bring certain breakthroughs in industries.

Original post:

Quantum Computing Breakthrough: Unveiling Properties of New Superconductor - Analytics Insight

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

This Startup Is Using Quantum Computing And AI To Cut Drug Discovery Time From 3 Years To 4 Months – Forbes

Posted: at 1:52 am


without comments

Polaris Quantum Biotech is reinventing drug discovery, reducing the time it takes to find candidate molecules for drug development from the typical three years to just four months. As with other successful efforts to redesign established processes, Polaris is betting on scalability and automation. The startup, co-founded by Shahar Keinan and Bill Shipman, came out of stealth a year ago, revealing the first-ever drug discovery platform using a quantum computer, cost-efficiently scanning billions of molecules from a large chemical space.

Dr. Shahar Keinan, CEO, Polaris Quantum Biotech

Having worked in the drug development industry for years, Polaris founders decided to try and address the two major challenges they identified: The technology used and the business model. We wanted to solve both of these problems together, says Polaris CEO, Shahar Keinan.

The technology-related part of their solution was to use quantum computing, rather than classical computers, to speed-up the process. In terms of the business model, in contrast to the research labs (or Contract Research Organizations) that provide molecular discovery as a service to large pharmaceutical companies, Polaris is licensing their discoveries. With this business model, says Keinan, you need a diverse portfolio in order to diversify your risk. Diversity here is defined as the target disease, the specific protein targeted, and even the delivery mechanism.

Based on industry benchmarks, out of 100 assets (i.e., drug blueprints, lead compounds), between 1 to 5 will be used in a drug that will be sold commercially. Between 75 to 80 may reach clinical testing but typically this number could be reduced to no more than 25 over subsequent testing phases. Polaris is paid at each stage in the drugs journey to the market, and increasingly more as each hurdle is passed successfully.

The lead compounds Polaris develops target specific biological processes that are known to be the cause of a specific disease and are designed to get involved in the process in a way that arrests its further development or eliminates it altogether. We take this big biological machine and put a wrench into it, says Keinan. The trick is to find a molecule that will do exactly what it is expected to do but will not do other, not useful or potentially harmful, things to other biological processes in the human body.

Polaris is developing an ecosystem around its drug discovery platform, enlisting various hardware and software resources to assist it. Last year, it partnered with Fujitsus quantum-inspired Digital Annealer technology, initially targeting dengue fever, a mosquito-borne condition that is present in over 100 countries worldwide, killing as many as 22,000 people each year. Another quantum computing provider Polaris is working with is D-Wave Systems, accessing its quantum annealing technology through the AWS cloud service.

Yet another Polaris partnership was announced recently, collaborating with Auransa to discover treatments for neglected diseases disproportionately affecting women.An example is endometriosis, an incurable condition affecting millions of women caused when tissue that lines the womb grows elsewhere in the abdomen. Auransa is using AI to develop precision medicine solutions in areas of unmet medical needs, and in this partnership, Auransa finds the biological target and Polaris finds the arrow (the lead compound) that will hit the targets bullseye.

Over the last decade, there has been a growing application of AI (or machine/deep learning) to drug discovery and pharmaceutical company executives expect it to be the emerging technology that will have the greatest impact on their industry in 2021. Last year, a survey of life science organizations found that 31% were set to begin quantum computing evaluation in 2020 and a further 39% were planning to evaluate it in 2021 or have quantum computing on their radar. Polaris Quantum Biotech could well be at the center of a perfect storm that will accelerate the pace of drug discovery.

Read this article:

This Startup Is Using Quantum Computing And AI To Cut Drug Discovery Time From 3 Years To 4 Months - Forbes

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

Keynotes Announced for IEEE International Conference on Quantum Computing and Engineering – HPCwire

Posted: at 1:52 am


without comments

LOS ALAMITOS, Calif., June 24, 2021 The IEEE International Conference on Quantum Computing and Engineering (QCE21), a multidisciplinary event bridging the gap between the science of quantum computing and the development of an industry surrounding it, reveals its full keynote lineup. Taking place 18-22 October 2021 virtually, QCE21 will deliver a series of world-class keynote presentations, as well as workforce-building tutorials, community-building workshops, technical paper presentations, stimulating panels, and innovative posters. Register here.

Also known as IEEE Quantum Week, QCE21 is unique by integrating dimensions from academic and business conferences and will reveal cutting edge research and developments featuring quantum research, practice, applications, education, and training.

QCE21s Keynote Speakers include the following quantum groundbreakers and leaders:

Alan Baratz D-Wave Systems, President & CEO James S. Clarke Intel Labs, Director of Quantum Hardware David J. Dean Oak Ridge National Laboratory, Director Quantum Science Center Jay Gambetta IBM Quantum, IBM Fellow & VP Quantum Computing Sonika Johri IonQ, Senior Quantum Applications Research Scientist Anthony Megrant Google Quantum AI, Lead Research Scientist Prineha Narang Harvard University & Aliro Quantum, Professor & CTO Brian Neyenhuis Honeywell Quantum Solutions, Commercial Operations Leader Urbasi Sinha Raman Research Institute, Bangalore, Professor Krista Svore Microsoft, General Manager Quantum Systems

Through participation from the international quantum community, QCE21 has developed an extensive conference program with world-class keynote speakers, technical paper presentations, innovative posters, exciting exhibits, technical briefings, workforce-building tutorials, community-building workshops, stimulating panels, and Birds-of-Feather sessions.

Papers accepted by QCE21 will be submitted to the IEEE Xplore Digital Library, and the best papers will be invited to the journals IEEE Transactions on Quantum Engineering (TQE) and ACM Transactions on Quantum Computing (TQC).

QCE21 is co-sponsored by IEEE Computer Society, IEEE Communications Society, IEEE Council of Superconductivity, IEEE Future Directions Committee, IEEE Photonics Society, IEEE Technology and Engineering Management Society, IEEE Electronics Packaging Society, IEEE Signal Processing Society (SP), and IEEE Electron Device Society (EDS).

The inaugural 2020 IEEE Quantum Week built a solid foundation and was highly successful over 800 people from 45 countries and 225 companies attended the premier event that delivered 270+ hours of programming on quantum computing and engineering.

The second annual 2021 Quantum Week will virtually connect a wide range of leading quantum professionals, researchers, educators, entrepreneurs, champions, and enthusiasts to exchange and share their experiences, challenges, research results, innovations, applications, and enthusiasm, on all aspects of quantum computing, engineering and technologies. The IEEE Quantum Week schedule will take place during Mountain Daylight Time (MDT).

Visit IEEE QCE21 for all event news including sponsorship and exhibitor opportunities.

QCE21 Registration Package provides Virtual Access to IEEE Quantum Week Oct 18-22, 2021 as well as On-Demand Access to all recorded events until the end of December 2021 featuring over 270 hours of programming in the realm of quantum computing and engineering.

About the IEEE Computer Society

TheIEEE Computer Societyis the worlds home for computer science, engineering, and technology. A global leader in providing access to computer science research, analysis, and information, the IEEE Computer Society offers a comprehensive array of unmatched products, services, and opportunities for individuals at all stages of their professional career. Known as the premier organization that empowers the people who drive technology, the IEEE Computer Society offers international conferences, peer-reviewed publications, a unique digital library, and training programs.

Source: IEEE

Go here to read the rest:

Keynotes Announced for IEEE International Conference on Quantum Computing and Engineering - HPCwire

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing

The only answer to the quantum cybersecurity threat is quantum – Sifted

Posted: at 1:52 am


without comments

Imagine a technology that could undo all encryption on the internet. It would be impossible to trust any information communicated, impossible to verify any identity. The security of our society and our economies would crumble.

Thats the potential threat posed by future quantum computers. For all the good that quantum computing promises eradicating disease, helping us understand climate change, identifying new molecules and materials in the wrong hands it could pose an existential risk to classical computers and existing technologies. Fault-tolerant quantum computers with enough processing power would be enough to unravel all the cryptography used in the modern internet.

This threat is especially relevant when it comes to blockchain. More and more companies are adopting blockchain technology given the transparency, security and reduced costs. 84% of companies had some involvement in blockchain in 2018. Quantum threatens the very fabric of the distributed ledger, with the ability to break everything the secure, decentralised, transparent networks stand for.

Quantum computing wont destroy blockchains themselves. It instead threatens to break the security features that underpin them; the features which make it the unique and trusted network it is today.

As public data structures that rely heavily on cryptography, blockchains are natural targets for hackers looking to exploit cryptographic vulnerabilities. Whether its a public chain used to send, verify and receive cryptocurrency, or a private version built for business, each one relies on blocks of data placed one after the other. For data to be included in this chain, it needs to be added and then verified by other members of the group.

Take the example of a private enterprise blockchain. When one company wants to move assets to another company they put the transaction on a block and add this block to the chain. Other members of the community look at the block, confirm that the correct value has gone from company A to company B and they verify the transaction. Once its added, this transaction (or any flow of data) is locked into the chain for life. Its kept not only for posterity, but so that everyone involved knows exactly where that data has come from. The latter is particularly useful for supply chains or tracking the sources of ingredients in food or materials in devices.

On the plus side, this process means the entire history is preserved, locked and protected. On the other hand, it means that the entire history and its security is dependent on the last block placed. If a criminal were to bypass this security and transmit a fraudulent block, every point forward would be based on a modified version of history. Or worse, blockchains could fork, with different parties holding different versions of the past. It would be unclear which parties owned valuable assets, potentially allowing criminals to steal what isnt theirs.

This is bad enough when the data held on blockchain is financial, let alone as the technology is adopted by health providers, governments and even used to underpin the digital data of entire countries all routes that could be, and are being, explored.

In its current form, the security used to protect each of these blocks is robust and resistant to traditional cracking methods. Yet its facing a significant threat; one that has already been proven the threat of quantum-based algorithms. These algorithms can and will break such keys, and they will eventually do so with relative ease. This means its only a matter of time before robust quantum computers currently under development will be able to break larger and larger keys. Some estimates place this moment as little as five to 10 years away.

The only way to keep blockchains safe is to protect them with quantum-proof cryptographic keys in the first place; keys that are impenetrable from even the fastest, most advanced quantum computers we can envision today. To fight quantum with quantum.

The only way to keep blockchains safe is to protect them with quantum-proof cryptographic keys in the first placeTo fight quantum with quantum.

In a paper, published this month with the Inter-American Development Bank (IDB) and Tecnolgico de Monterrey, we have developed a proof-of-concept that can be built as a layer on top of existing blockchain technologies. This layer relies upon CQCs IronBridge Platform to generate provably-perfect, quantum-proof keys that address two particular areas of weakness uncovered in blockchain technology. These are the internet communications between blockchain nodes, and blockchain transaction signatures used by businesses to verify their identity when submitting transactions or validating blocks.

By quantum-proof, we refer to keys that are generated using quantum computers, harnessing the innate randomness of quantum mechanics. Not only are these keys completely unpredictable to a quantum attacker, but they are also based on algorithms that are believed to be unbreakable by quantum computers. This technology, available through the IronBridge platform from CQC, works today, even on the limited quantum computers that currently exist, and without ever interfering with a blockchains functionality. It represents the first time ever such a solution has been built and proven in this way.

Yet because securing a blockchain involves applying the same remedies as for other technologies, the work weve done here is not unique to blockchains. It has vast potential.

However, the system is not perfect. Its far more efficient for quantum cryptography to be built into the very bones of blockchain technology, rather than layered on top. It is hoped this research encourages blockchain vendors towards earlier adoption of quantum-proof algorithms and key generation.

Others are approaching the quantum cybersecurity threat in different ways. Companies such as British Telecom and Toshiba are exploring how to share keys using quantum physics; a process known as quantum key distribution (QKD). These QKD systems are still in their infancy, with many technical challenges ahead, but they show promise as another area where quantum will strengthen cybersecurity.

The threat posed to blockchains by quantum computing isnt new, nor is it something thats going to hit in the next few months. But every baby step we take towards faster, cheaper quantum computers today is bringing it more starkly into view. It may be five years from now, it could be 15, but the sooner we protect blockchains and get the basics right today, the more protected it and us will be in the future.

Duncan Jones is Head of Quantum Cybersecurity at Cambridge Quantum.

More:

The only answer to the quantum cybersecurity threat is quantum - Sifted

Written by admin

July 2nd, 2021 at 1:52 am

Posted in Quantum Computing


Page 9«..891011..20..»



matomo tracker